Physics of the Solid State
Volumes and Issues
Reasons for the negative dielectric response in the frequency range 0.5-20 MHz: modeling and experiment (using the example of sodium niobate ceramics)
Malyshkina O. V. 1, Malysheva N. E.2, Djakova E. V.1, Ali M.3
1Tver State University, Tver, Russia
2Military Academy of Aero-Space Defence named after Marshal of the Soviet Union G.K. Zhukov, Tver, Russia
3Tver State Medical University, Tver, Russia
Email: Olga.Malyshkina@mail.ru

PDF
Comparative studies of the experimental dispersion dependences of the complex dielectric constant of sodium niobate ceramics and those calculated on the basis of a mathematical model were carried out. It is shown that taking into account the contribution of the complex conductivity, which is caused by resonant polarization, to the dielectric response allows us to obtain in the calculation model a minimum on the frequency dependence of the real part of the complex dielectric permittivity, which has negative values at high temperatures, which fully corresponds to the experimentally observed dielectric response. Keywords: piezoelectric ceramics, dispersion of complex permittivity, relaxation processes, resonance polarization.
  1. A.K. Jonscher. Dielectric relaxation in solids. Chelsea Dielectrics Press Limited, London (1983). 400 p
  2. A.K. Jonscher. Universal relaxation law: a sequel to Dielectric relaxation in solids. Chelsea Dielectrics Press Limited, London (1996). 415 p
  3. A.K. Jonscher. J. Chem. SOC, Faraday Trans. 2 82, 1, 75 (1986)
  4. A.A. Felix, M.O. Orlandi, J.A. Varela. Solid State Commun. 151, 19, 1377 (2011)
  5. H.L. Kwok. Phys. Status Soidi C 5, 2, 638 (2008)
  6. Yu.M. Poplavko. Fizika dielektrikov. Vishch. shk., Kiev. (1980). (in Russian)
  7. N.E. Malysheva, E.V. D'yakova, O.V. Malyshkina. Fiz.-Khim. Aspekty Izuch. Klasterov, Nanostrukt. Nanomater. 15. 481 (2023). (in Russian)
  8. N.D. Gavrilova, V.K. Novik, A.V. Vorobyev, I.A. Malyshkina. J. Non-Cryst. Solids 452, 1 (2016)
  9. O.V. Malyshkina, M. Ali, E.V. Barabanova, A.I. Ivanova. Ferroelectrics 567, 1, 197 (2020)
  10. O.V. Malyshkina, M. Ali, N.E. Malysheva, K.V. Patsuev. Phys. Solid State 64, 12, 1929 (2022)
  11. R.H. Mitchell, B.J. Kennedy, K.S. Knight. Phys. Chem. Miner. 45, 1, 77 (2018).
  12. N.N. Krainik. Izv. Akad. Nauk SSSR. Ser. Fiz. 28, 4, 643 (1964). (in Russian)
  13. P. Grosse. Freie Elektronen in Festkörpern. Springer. (1982). (in German)
  14. P. Debye. Polar molecules. The Chemical Catalog Company, N. Y. (1929). 172 p
  15. K.S. Cole, R.H. Cole. J. Chem. Phys. 9, 4, 341 (1941).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru