Photocatalytic properties of aminated graphitic carbon dots based on citric acid
Mitroshin A. M.1,2, Margaryan I. V. 1, Viktorov N. B. 3, Spiridonov I. G.1, Dubavik A. Yu.1, Kurnosenko S. A.4, Silyukov O. I.4, Kundelev E. V. 1
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
2Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
3Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
4St. Petersburg State University, St. Petersburg, Russia
Email: almitroshin51@gmail.com, igormargaryan@niuitmo.ru, kolki@mail.ru, kundelev.evg@gmail.com, olegsilyukov@yandex.ru, kundelev.evg@Gmail.com

PDF
To design robust composite photocatalytic systems for hydrogen generation, efficient binding of the photoabsorber and the catalyst is critical. When using carbon dots as photoabsorbers, the efficiency of such binding can be easily controlled by varying their surface groups. In the present work, the structural and optical properties of graphitic as well as aminated graphitic carbon dots were prepared and investigated. The aminated carbon dots were obtained from the original citric acid-based by attaching dimethyl ethylenediamine and dimethylaminopropylamine molecules. The use of the obtained carbon dots as photoabsorbers in photocatalytic systems allowed us to establish the dependence of hydrogen generation on the charge and size of their surface groups. The analysis of the obtained experimental data showed that the use of dimethyl ethylenediamine molecules for amination of the carbon dots surface allows to enhance hydrogen generation by 2.7 times. Keywords: photocatalysis, hydrogen generation, carbon dots, photoluminescence, luminescence decay time, atomic force microscopy, infrared absorption spectroscopy.
  1. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens. J. Am. Chem. Soc., 126 (40), 12736-12737 (2004). DOI: 10.1021/ja040082h
  2. S.N. Baker, G.A. Baker. Angew. Chem. Int. Ed. Engl., 49 (38), 6726-6744 (2010). DOI: 10.1002/anie.200906623
  3. L. Xiao, H. Sun. Nanoscale Horiz, 3 (6), 565-597 (2018). DOI: 10.1039/c8nh00106e
  4. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang. Angew. Chem. Int. Ed. Engl., 52 (14), 3953-3957 (2013). DOI: 10.1002/anie.201300519
  5. F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang. Adv. Mater., 29 (3), 1604436 (2017). DOI: 10.1002/adma.201604436
  6. N.V. Tepliakov, E.V. Kundelev, P.D. Khavlyuk, Y. Xiong, M.Y. Leonov, W. Zhu, A.V. Baranov, A.V. Fedorov, A.L. Rogach, I.D. Rukhlenko. ACS Nano, 13 (9), 10737-10744 (2019). DOI: 10.1021/acsnano.9b05444
  7. Y.F. Kang, Y.H. Li, Y.W. Fang, Y. Xu, X.M. Wei, X.B. Yin. Sci. Rep., 5, 11835 (2015). DOI: 10.1038/srep11835
  8. E.A. Stepanidenko, I.A. Arefina, P.D. Khavlyuk, A. Dubavik, K.V. Bogdanov, D.P. Bondarenko, S.A. Cherevkov, E.V. Kundelev, A.V. Fedorov, A.V. Baranov, V.G. Maslov, E.V. Ushakova, A.L. Rogach. Nanoscale, 12 (2), 602-609 (2020). DOI: 10.1039/c9nr08663c
  9. E.V. Kundelev, N.V. Tepliakov, M.Y. Leonov, V.G. Maslov, A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, A.L. Rogach. J. Phys. Chem. Lett., 11 (19), 8121-8127 (2020). DOI: 10.1021/acs.jpclett.0c02373
  10. E.V. Kundelev, N.V. Tepliakov, M.Y. Leonov, V.G. Maslov, A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, A.L. Rogach. J. Phys. Chem. Lett., 10 (17), 5111-5116 (2019). DOI: 10.1021/acs.jpclett.9b01724
  11. E.V. Kundelev, E.D. Strievich, N.V. Tepliakov, A.D. Murkina, A.Y. Dubavik, E.V. Ushakova, A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, A.L. Rogach. J. Phys. Chem. C, 126 (42), 18170-18176 (2022). DOI: 10.1021/acs.jpcc.2c05926
  12. X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng. Analyst, 139 (10), 2322-2325 (2014). DOI: 10.1039/c3an02222f
  13. A.H. Loo, Z. Sofer, D. Bouvsa, P. Ulbrich, A. Bonanni, M. Pumera. ACS Appl. Mater. Interfaces, 8 (3), 1951-1957 (2016). DOI: 10.1021/acsami.5b10160
  14. H. Yu, Y. Zhao, C. Zhou, L. Shang, Y. Peng, Y. Cao, L.Z. Wu, C.H. Tung, T. Zhang. J. Mater. Chem. A, 2, 3344-3351 (2014). DOI: 10.1002/cssc.201700943
  15. X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S.V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang. ACS Nano, 7 (12), 11234-11241 (2013). DOI: 10.1021/nn405017q
  16. B.C.M. Martindale, G.A.M. Hutton, C.A. Caputo, E. Reisner. J. Am. Chem. Soc., 137 (18), 6018-6025 (2015). DOI: 10.1021/jacs.5b01650
  17. B.C.M. Martindale, G.A.M. Hutton, C.A. Caputo, S. Prantl, R. Godin, J.R. Durrant, E. Reisner. Angew. Chem. Int. Ed. Engl., 129 (23), 6559-6463 (2017). DOI: 10.1002/anie.201700949
  18. M.A. Gross, A. Reynal, J.R. Durrant, E. Reisner. J. Am. Chem. Soc. 136 (1), 356-366 (2014). DOI: 10.1021/ja410592d
  19. I.V. Margaryan, A.M. Mitroshin, A.Yu. Dubovik, E.V. Kundelev. Opt. i spectr., 131 (7), 985 (2023). (in Russian) DOI: 10.21883/OS.2023.07.56135.4977-23

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru