Transversal magneto-optical Kerr effect in three-periodic bigyrotropic photonic crystals
Glukhov I. A.
1,2,3, Panyaev I. S.
1,2, Sannikov D. G.
1,2, DadoenkovaYu. S.
4, Dadoenkova N. N.
11Galkin Donetsk Institute for Physics and Engineering, Donetsk, Russia
2Ulyanovsk State University, Ulyanovsk, Russia
3Kotel’nikov Institute of Radio Engineering and Electronics (Ulyanovsk Branch), Russian Academy of Sciences, Ulyanovsk, Russia
4Ecole Nationale d'Ingenieurs de Brest, Brest, France
Email: panyaev.ivan@rambler.ru, sannikov-dg@yandex.ru, dadoenkova@yahoo.com
We study one-dimensional three-periodic photonic crystal structures based on dielectrics (SiO2, TiO2) and ferrite garnets (YIG, Bi:YIG), forming supercells of the type [(ab)^N(cd)^M]K. Using the 4x4 matrix method, the frequency-angular spectra of plane electromagnetic waves of orthogonal polarizations are studied, and a comparative analysis of photonic band gaps for non-magnetic and magnetic photonic crystals and their combinations are carried out. The transverse (equatorial) magneto-optical Kerr effect, which occurs under 180o-magnetization reversal of the structures under consideration, has been studied. The applied aspect of using the results to create magnetically active optoelectronic components and nanophotonics devices operating in the infrared range is discussed. Keywords: transversal magneto-optical Kerr effect, photonic band gap (PBG), photonic crystals (PCs).
- J.D. Joannopoulos, S.G. Johnson, J.N.J. Winn, R.D. Meade. Photonic Crystals. Molding the Flow of Light, 2nd ed. (Princetone University Press, Princeton, 2008)
- D. Dzibrou. Complex Oxide Photonic Crystals. (Royal Institute of Technology, Stockholm, 2009)
- D.W. Prather, A. Sharkawy, S. Shi, J. Murakowski, G. Schneider. Photonic crystals: theory, applications, and fabrication. (John Wiley \& Sons, New Jersey, 2009)
- K. Sakoda. Optical properties of Photonic Crystals, 2nd ed. (Springer, Berlin, 2005). DOI: 10.1017/CBO9781107415324.004
- V.F. Shabanov, S.Ya. Vetrov,A.V. Shabanov. Optika fotonnykh kristallov. (SO RAN, Novosibirsk, 2005)
- I.S. Panyaev, L.R. Yafarova, D.G. Sannikov, N.N. Dadoenkova, Y.S. Dadoenkova, I.L. Lyubchanskii. J. Appl. Phys., 126 (10), 103102 (2019). DOI: 10.1063/1.5115829
- I.S. Panyaev, N.N. Dadoenkova, Y.S. Dadoenkova, I.A. Rozhleys, M, Krawczyk, I.L. Lyubchanskii, D.G. Sannikov. J. Phys. D. Appl. Phys., 49 (43), 435103 (2016). DOI: 10.1088/0022-3727/49/43/435103
- I.S. Panyaev, D.G. Sannikov, Yu.S. Dadoenkova, N.N. Dadoenkova. IEEE Sens. J., 22 (23), 22428 (2022). DOI: 10.1109/JSEN.2022.3217117
- I.S. Panyaev, D.G. Sannikov, N.N. Dadoenkova, Yu.S. Dadoenkova. Appl. Opt., 60 (7), 1943 (2021). DOI: 10.1364/ao.415966
- I.A. Glukhov, S.G. Moiseev. Opt. i spektr., 131 (11), 1475 (2023) (in Russian). DOI: 10.61011/OS.2023.11.57005.5095-23
- J.W. Kos, M. Krawczyk, Yu.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii. J. Appl. Phys., 115 (17), 174311 (2014). DOI: 10.1063/1.4874797
- Yu.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, J.W. Klos, M. Krawczyk. J. Appl. Phys., 120 (7), 73903 (2016). DOI: 10.1063/1.4961326
- J.W. Klos, M. Krawczyk, Yu.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii. IEEE Trans. Magn., 50 (11), 2 (2014). DOI: 10.1109/TMAG.2014.2321532
- Yu.S. Dadoenkova, N.N. Dadoenkova, J.W. K os, M. Krawczyk, I.L. Lyubchanskii. Phys. Rev. A, 96 (4), 43804 (2017). DOI: 10.1103/PhysRevA.96.043804
- Yu.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, J.W. Klos, M. Krawczyk. IEEE Trans. Magn., 53 (11), 1 (2017). DOI: 10.1109/TMAG.2017.2712278
- E.E. Narimanov. Phys. Rev. X, 4 (4), 1 (2014). DOI: 10.1103/PhysRevX.4.041014
- V.N. Smolyaninova, B. Yost, D. Lahneman, E.E. Narimanov, I.I. Smolyaninov. Sci. Rep., 4 (1), 5706 (2015). DOI: 10.1038/srep05706
- S.V. Zhukovsky, A.A. Orlov, V.E. Babicheva, A.V. Lavrinenko, J.E. Sipe. Phys. Rev. A --- At. Mol. Opt. Phys., 90 (1), 013801 (2014). DOI: 10.1103/PhysRevA.90.013801
- A.V. Chebykin, V.E. Babicheva, I.V. Iorsh, A.A. Orlov, P.A. Belov, S.V. Zhukovsky. Phys. Rev. A, 93 (3), 033855 (2016). DOI: 10.1103/PhysRevA.93.033855
- N.N. Dadoenkova, Y.S. Dadoenkova, I.S. Panyaev, D.G. Sannikov, I.L. Lyubchanskii. J. Appl. Phys., 123 (4), 043101 (2018). DOI: 10.1063/1.5011637
- D.M. El-Amassi, S.A. Taya, D. Vigneswaran. J. Theor. Appl. Phys., 12 (4), 293 (2018). DOI: 10.1007/s40094-018-0308-x
- J. Wu, J. Gao. J. Supercond. Nov. Magn., 28 (7), 1971 (2015). DOI: 10.1007/s10948-015-3002-0
- S.M. Lo, S. Hu, G. Gaur, Y. Kostoulas, S.M. Weiss, P.M. Fauchet. Opt. Express, 25 (6), 7046 (2017). DOI: 10.1364/oe.25.007046
- S.M. Aminifard, M. Sovizi. Opt. Commun., 322, 1 (2014). DOI: 10.1016/j.optcom.2014.01.086
- O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, V.I. Belotelov. Appl. Phys. Lett., 112 (6), 063101 (2018). DOI: 10.1063/1.5012873
- A.K. Zvezdin, V.A. Kotov. Modern Magnetooptics and Magnetooptical Materials. (IOP Publishing, Bristol and Philadelphia, 1997). DOI: 10.1887/075030362X
- J. Qin, S. Xia, W. Yang, H. Wang, W. Yan, Y. Yang, Z. Wei, W. Liu, Y. Luo, L. Deng, L. Bi. Nanophotonics, 11 (11), 2639 (2022). DOI: 10.1515/nanoph-2021-0719
- Yu.S. Dadoenkova, F.F.L. Bentivegna, N.N. Dadoenkova, I.L. Lyubchanskii. J. Opt., 19 (1), 15610 (2016). DOI: 10.1088/2040-8986/19/1/015610
- V.I. Belotelov, A.K. Zvezdin. J. Opt. Soc. Am. B, 22 (1), 286 (2005). DOI: 10.1364/JOSAB.22.000286
- D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, V. Belotelov. Opt. Lett., 41 (16), 3813 (2016). DOI: 10.1364/OL.41.003813
- M. Inoue, T. Fujii. J. Appl. Phys., 81 (8 PART 2B), 5659 (1997). DOI: 10.1063/1.364687
- D.W. Berreman. J. Opt. Soc. Am., 62 (4), 502 (1972). DOI: 10.1364/JOSA.62.000502
- O.V. Borovkova, F. Spitzer, V.I. Belotelov, I.A. Akimov, A.N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A.K. Zvezdin, D.R. Yakovlev, M. Bayer. Nanophotonics, 8 (2), 287 (2019). DOI: 10.1515/nanoph-2018-0187
- O. Borovkova, A. Kalish, V. Belotelov. Opt. Lett., 41 (19), 4593 (2016). DOI: 10.1364/ol.41.004593
- J.R. Devore. J. Opt. Soc. Am., 41 (6), 416 (1951). DOI: 10.1364/JOSA.41.000416
- I.H. Malitson. J. Opt. Soc. Am., 55 (10), 1205 (1965). DOI: 10.1364/JOSA.55.001205
- B. Johnson A.K. Walton. Br. J. Appl. Phys., 16 (4), 475 (1965). DOI: 10.1088/0508-3443/16/4/310
- M. Wallenhorst, M. Niemoller, H. Dotsch, P. Hertel, R. Gerhardt, B. Gather. J. Appl. Phys., 77 (7), 2902 (1995). DOI: 10.1063/1.359516
- P. Hansen, J.P. Krumme. Thin Solid Films, 114 (1), 69 (1984). DOI: 10.1016/0040-6090(84)90337-7
- M. Torfeh, H. Le Gall. Phys. Status Solidi, 63 (1), 247 (1981). DOI: 10.1002/pssa.2210630133
- J.P. Krumme, C.P. Klages, V. Doormann. Appl. Opt., 23 (8), 1184 (1984). DOI: 10.1364/AO.23.001184
- N.N. Dadoenkova, I.L. Lyubchanskii, M.I. Lyubchanskii, E.A. Shapovalov, Y.P. Lee. Frontiers in Optical Technology: Materials \& Devices (Nova Science, New York, 2007), p. 22-72
- R. Sobolewski, J.R. Park. IEEE Trans. Appl. Supercond., 11 (1I), 727 (2001). DOI: 10.1109/77.919448
- V.V. Randoshkin, A.Ya. Chervonenkis. Prikladnaya magnitooptika (Energoatomizdat, Moskva, 1990) (in Russian)
- M. Amanollahi, M. Zamani. Phys. Scr., 98 (8), 85505 (2023). DOI: 10.1088/1402-4896/ACE087
- L. Li, F. Lei, X. Zong, P. Li, Y. Liu. Results Phys., 51, 106640 (2023). DOI: 10.1016/J.RINP.2023.106640
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.