Transversal magneto-optical Kerr effect in three-periodic bigyrotropic photonic crystals
Glukhov I. A.1,2,3, Panyaev I. S. 1,2, Sannikov D. G. 1,2, DadoenkovaYu. S.4, Dadoenkova N. N.1
1Galkin Donetsk Institute for Physics and Engineering, Donetsk, Russia
2Ulyanovsk State University, Ulyanovsk, Russia
3Kotel’nikov Institute of Radio Engineering and Electronics (Ulyanovsk Branch), Russian Academy of Sciences, Ulyanovsk, Russia
4Ecole Nationale d'Ingenieurs de Brest, Brest, France
Email: panyaev.ivan@rambler.ru, sannikov-dg@yandex.ru, dadoenkova@yahoo.com

PDF
We study one-dimensional three-periodic photonic crystal structures based on dielectrics (SiO2, TiO2) and ferrite garnets (YIG, Bi:YIG), forming supercells of the type [(ab)^N(cd)^M]K. Using the 4x4 matrix method, the frequency-angular spectra of plane electromagnetic waves of orthogonal polarizations are studied, and a comparative analysis of photonic band gaps for non-magnetic and magnetic photonic crystals and their combinations are carried out. The transverse (equatorial) magneto-optical Kerr effect, which occurs under 180o-magnetization reversal of the structures under consideration, has been studied. The applied aspect of using the results to create magnetically active optoelectronic components and nanophotonics devices operating in the infrared range is discussed. Keywords: transversal magneto-optical Kerr effect, photonic band gap (PBG), photonic crystals (PCs).
  1. J.D. Joannopoulos, S.G. Johnson, J.N.J. Winn, R.D. Meade. Photonic Crystals. Molding the Flow of Light, 2nd ed. (Princetone University Press, Princeton, 2008)
  2. D. Dzibrou. Complex Oxide Photonic Crystals. (Royal Institute of Technology, Stockholm, 2009)
  3. D.W. Prather, A. Sharkawy, S. Shi, J. Murakowski, G. Schneider. Photonic crystals: theory, applications, and fabrication. (John Wiley \& Sons, New Jersey, 2009)
  4. K. Sakoda. Optical properties of Photonic Crystals, 2nd ed. (Springer, Berlin, 2005). DOI: 10.1017/CBO9781107415324.004
  5. V.F. Shabanov, S.Ya. Vetrov,A.V. Shabanov. Optika fotonnykh kristallov. (SO RAN, Novosibirsk, 2005)
  6. I.S. Panyaev, L.R. Yafarova, D.G. Sannikov, N.N. Dadoenkova, Y.S. Dadoenkova, I.L. Lyubchanskii. J. Appl. Phys., 126 (10), 103102 (2019). DOI: 10.1063/1.5115829
  7. I.S. Panyaev, N.N. Dadoenkova, Y.S. Dadoenkova, I.A. Rozhleys, M, Krawczyk, I.L. Lyubchanskii, D.G. Sannikov. J. Phys. D. Appl. Phys., 49 (43), 435103 (2016). DOI: 10.1088/0022-3727/49/43/435103
  8. I.S. Panyaev, D.G. Sannikov, Yu.S. Dadoenkova, N.N. Dadoenkova. IEEE Sens. J., 22 (23), 22428 (2022). DOI: 10.1109/JSEN.2022.3217117
  9. I.S. Panyaev, D.G. Sannikov, N.N. Dadoenkova, Yu.S. Dadoenkova. Appl. Opt., 60 (7), 1943 (2021). DOI: 10.1364/ao.415966
  10. I.A. Glukhov, S.G. Moiseev. Opt. i spektr., 131 (11), 1475 (2023) (in Russian). DOI: 10.61011/OS.2023.11.57005.5095-23
  11. J.W. Kos, M. Krawczyk, Yu.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii. J. Appl. Phys., 115 (17), 174311 (2014). DOI: 10.1063/1.4874797
  12. Yu.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, J.W. Klos, M. Krawczyk. J. Appl. Phys., 120 (7), 73903 (2016). DOI: 10.1063/1.4961326
  13. J.W. Klos, M. Krawczyk, Yu.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii. IEEE Trans. Magn., 50 (11), 2 (2014). DOI: 10.1109/TMAG.2014.2321532
  14. Yu.S. Dadoenkova, N.N. Dadoenkova, J.W. K os, M. Krawczyk, I.L. Lyubchanskii. Phys. Rev. A, 96 (4), 43804 (2017). DOI: 10.1103/PhysRevA.96.043804
  15. Yu.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, J.W. Klos, M. Krawczyk. IEEE Trans. Magn., 53 (11), 1 (2017). DOI: 10.1109/TMAG.2017.2712278
  16. E.E. Narimanov. Phys. Rev. X, 4 (4), 1 (2014). DOI: 10.1103/PhysRevX.4.041014
  17. V.N. Smolyaninova, B. Yost, D. Lahneman, E.E. Narimanov, I.I. Smolyaninov. Sci. Rep., 4 (1), 5706 (2015). DOI: 10.1038/srep05706
  18. S.V. Zhukovsky, A.A. Orlov, V.E. Babicheva, A.V. Lavrinenko, J.E. Sipe. Phys. Rev. A --- At. Mol. Opt. Phys., 90 (1), 013801 (2014). DOI: 10.1103/PhysRevA.90.013801
  19. A.V. Chebykin, V.E. Babicheva, I.V. Iorsh, A.A. Orlov, P.A. Belov, S.V. Zhukovsky. Phys. Rev. A, 93 (3), 033855 (2016). DOI: 10.1103/PhysRevA.93.033855
  20. N.N. Dadoenkova, Y.S. Dadoenkova, I.S. Panyaev, D.G. Sannikov, I.L. Lyubchanskii. J. Appl. Phys., 123 (4), 043101 (2018). DOI: 10.1063/1.5011637
  21. D.M. El-Amassi, S.A. Taya, D. Vigneswaran. J. Theor. Appl. Phys., 12 (4), 293 (2018). DOI: 10.1007/s40094-018-0308-x
  22. J. Wu, J. Gao. J. Supercond. Nov. Magn., 28 (7), 1971 (2015). DOI: 10.1007/s10948-015-3002-0
  23. S.M. Lo, S. Hu, G. Gaur, Y. Kostoulas, S.M. Weiss, P.M. Fauchet. Opt. Express, 25 (6), 7046 (2017). DOI: 10.1364/oe.25.007046
  24. S.M. Aminifard, M. Sovizi. Opt. Commun., 322, 1 (2014). DOI: 10.1016/j.optcom.2014.01.086
  25. O.V. Borovkova, H. Hashim, M.A. Kozhaev, S.A. Dagesyan, A. Chakravarty, M. Levy, V.I. Belotelov. Appl. Phys. Lett., 112 (6), 063101 (2018). DOI: 10.1063/1.5012873
  26. A.K. Zvezdin, V.A. Kotov. Modern Magnetooptics and Magnetooptical Materials. (IOP Publishing, Bristol and Philadelphia, 1997). DOI: 10.1887/075030362X
  27. J. Qin, S. Xia, W. Yang, H. Wang, W. Yan, Y. Yang, Z. Wei, W. Liu, Y. Luo, L. Deng, L. Bi. Nanophotonics, 11 (11), 2639 (2022). DOI: 10.1515/nanoph-2021-0719
  28. Yu.S. Dadoenkova, F.F.L. Bentivegna, N.N. Dadoenkova, I.L. Lyubchanskii. J. Opt., 19 (1), 15610 (2016). DOI: 10.1088/2040-8986/19/1/015610
  29. V.I. Belotelov, A.K. Zvezdin. J. Opt. Soc. Am. B, 22 (1), 286 (2005). DOI: 10.1364/JOSAB.22.000286
  30. D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, V. Belotelov. Opt. Lett., 41 (16), 3813 (2016). DOI: 10.1364/OL.41.003813
  31. M. Inoue, T. Fujii. J. Appl. Phys., 81 (8 PART 2B), 5659 (1997). DOI: 10.1063/1.364687
  32. D.W. Berreman. J. Opt. Soc. Am., 62 (4), 502 (1972). DOI: 10.1364/JOSA.62.000502
  33. O.V. Borovkova, F. Spitzer, V.I. Belotelov, I.A. Akimov, A.N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A.K. Zvezdin, D.R. Yakovlev, M. Bayer. Nanophotonics, 8 (2), 287 (2019). DOI: 10.1515/nanoph-2018-0187
  34. O. Borovkova, A. Kalish, V. Belotelov. Opt. Lett., 41 (19), 4593 (2016). DOI: 10.1364/ol.41.004593
  35. J.R. Devore. J. Opt. Soc. Am., 41 (6), 416 (1951). DOI: 10.1364/JOSA.41.000416
  36. I.H. Malitson. J. Opt. Soc. Am., 55 (10), 1205 (1965). DOI: 10.1364/JOSA.55.001205
  37. B. Johnson A.K. Walton. Br. J. Appl. Phys., 16 (4), 475 (1965). DOI: 10.1088/0508-3443/16/4/310
  38. M. Wallenhorst, M. Niemoller, H. Dotsch, P. Hertel, R. Gerhardt, B. Gather. J. Appl. Phys., 77 (7), 2902 (1995). DOI: 10.1063/1.359516
  39. P. Hansen, J.P. Krumme. Thin Solid Films, 114 (1), 69 (1984). DOI: 10.1016/0040-6090(84)90337-7
  40. M. Torfeh, H. Le Gall. Phys. Status Solidi, 63 (1), 247 (1981). DOI: 10.1002/pssa.2210630133
  41. J.P. Krumme, C.P. Klages, V. Doormann. Appl. Opt., 23 (8), 1184 (1984). DOI: 10.1364/AO.23.001184
  42. N.N. Dadoenkova, I.L. Lyubchanskii, M.I. Lyubchanskii, E.A. Shapovalov, Y.P. Lee. Frontiers in Optical Technology: Materials \& Devices (Nova Science, New York, 2007), p. 22-72
  43. R. Sobolewski, J.R. Park. IEEE Trans. Appl. Supercond., 11 (1I), 727 (2001). DOI: 10.1109/77.919448
  44. V.V. Randoshkin, A.Ya. Chervonenkis. Prikladnaya magnitooptika (Energoatomizdat, Moskva, 1990) (in Russian)
  45. M. Amanollahi, M. Zamani. Phys. Scr., 98 (8), 85505 (2023). DOI: 10.1088/1402-4896/ACE087
  46. L. Li, F. Lei, X. Zong, P. Li, Y. Liu. Results Phys., 51, 106640 (2023). DOI: 10.1016/J.RINP.2023.106640

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru