Anisotropic excited states relaxation of FAD bound with bacterial diaphorase
Gorbunova I.A.1, Yashkov D.V. 1, Volkov D.A. 1, Sasin M.E. 1, Vasyutinskii O.S. 1
1Ioffe Institute, St. Petersburg, Russia
Email: i.gorbunova@mail.ioffe.ru

PDF
This paper presents the results of experimental studies of excited state dynamics of FAD in free form and FAD bound with bacterial diaphorase. The studies were carried out by recording the time-resolved polarized fluorescence using time-correlation single photon counting technique after excitation of FAD by femtosecond laser pulses. It was found that excited state dynamics of FAD-diaphorase complexes differs significantly from that of free FAD. Free FAD exhibited four fluorescence decay times ranging from a few picoseconds to a few nanoseconds, while two fluorescence decay times were observed in FAD-diaphorase complex. The analysis of fluorescence polarization decay of FAD-diaphorase complex revealed a subnanosecond decay time of taubv = 130 ps. It was shown that this fluorescence depolarization time was due to anisotropic vibrational relaxation in FAD excited state which leads to rotation of transition dipole moment due to rearrangement of the molecular nuclei configuration after excitation. Keywords: FAD, Diaphorase, polarized fluorescence, TCSPC, anisotropy, fluorescence lifetime.
  1. S.D.M. Islam, T. Susdorf, A. Penzkofer, P. Hegemann. Chem. Phys., 295, 137-149 (2003). DOI: 10.1016/j.chemphys.2003.08.013
  2. M.V. Shirmanova, I.N. Druzhkova, M.M. Lukina, V.V. Dudenkova, N.I. Ignatova, L.B. Snopova, V.I. Shcheslavskiy, V.V. Belousov, E.V. Zagaynova. Sci. Rep., 7, 8911 (2018). DOI: 0.1038/s41598-017-09426-4
  3. C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas, I.I. Lamarre, S. Brizion, J.-B. Galey, W. Supatto, R. Legouis, A.-M. Pena, E. Beaurepaire. Sci. Rep., 7, 3792 (2017). DOI: 10.1038/s41598-017-03359-8
  4. X. Wang, Y. Xie, M. Huang, L. Yao, Y. Wang, Y. Fei, J. Ma, L. Mi. IEEE J. Selected Topics in Quant. Electron., 25, 12019 (2019). DOI: 10.1109/JSTQE.2018.2889429
  5. A.A. Heikal. Biomark. Med., 4 (2), 241-263 (2010). DOI: 10.2217/bmm.10.1
  6. R. Schmitz, K. Tweed, C. Walsh, A. J. Walsh, M. C. Skala. J. Biomed. Optics, 26, (2021). DOI: 10.1117/1.jbo.26.5.056502
  7. A. Sengupta, R.V. Khade, P. Hazra. J. Photochem. Photobiol. A, 221 (1), 105-112 (2011). DOI: 10.1016/j.jphotochem.2011.04.033
  8. N. Nakashima, K. Yoshihara, F. Tanaka, K. Yagi. J. Biol. Chem., 255, 5261-5263 (1980). DOI: 10.1016/s0021-9258(19)70779-0
  9. P.A.W. van den Berg, A. van Hoek, A.J.W.G. Visser. J. Biophys., 87, 2577-2586 (2004). DOI: 10.1529/biophysj.104.040030
  10. E. Nishimoto1, Y. Aso, T. Koga, S. Yamashita. J. Biochem., 140, 349-357 (2006). DOI: 10.1093/jb/ mvj156
  11. T. Fukamichi, E. Nishimoto. J. Fluoresc., 25 (3), 577-583 (2015). DOI: 10.1007/ s10895-015-1537-x
  12. P.I.H. Bastiaens, A.V. Hoek, W.J.H.V. Berkel, A.D. Kok, A.J.W.G. Visser. J. Biochem., 31, 7061-7068 (1992). DOI: 10.1021/bi00146a006
  13. S. Huang, A.A. Heikal, W.W. Webb. Photodiagnosis Photodyn. Ther., 82 (5), 2811-2825 (2002). DOI: 10.1016/S0006-3495(02)75621-X
  14. R. Cao, H.K. Wallrabe, A. Periasamy. J. Biom. Opt., 25, 1 (2020). DOI: 10.1117/1.jbo.25.1.014510
  15. Q. Yu, A.A. Heikal. J. Photochem. Photobiol. B, 95 (1), 46-57 (2009). DOI: 10.1016/j.jphotobiol.2008.12.010
  16. P.I. Bastiaens, A. van Hoek, J.A. Benen, J.-C. Brochon, A.J. Visser. J. Biophys., 63, 839-853 (1992). DOI: 10.1016/S0006-3495(92)81659-4
  17. J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, M.L. Johnson. Proc. Nat. Acad. Sci. USA, 89, 1271-1275 (1992). DOI: 10.1073/pnas.89.4.1271
  18. P.A.W. van den Berg, K.A. Feenstra, A.E. Mark, H.J.C. Berendsen, A.J.W.G. J. Phys. Chem. B, 106, 8858-8869 (2002). DOI: 10.1021/jp020356s
  19. A.J. Visser, A. van Hoek. Photochem. Photobiol., 33, 35-40 (1981). DOI: 10.1111/j.1751-1097.1981.tb04293.x
  20. A.J.W.G. Visser, H.-J. Grande, C. Veeger. Bioph. Chem., 12, 35-49 (1980). DOI: 10.1016/0301-4622(80)80037-8
  21. I. Gorbunova, M. Sasin, D. Golyshev, A. Semenov, A. Smolin, Y.M. Beltukov, O.S. Vasyutinskii. J. Phys. Chem. B, 125 (34), 9692-9707 (2021). DOI: 10.1021/acs.jpcb.1c04226
  22. A. Ambrus, B. Torocsik, L. Tretter, O. Ozohanics, V. Adam-Vizi. Human Molecular Genetics, 20, 2984-2995 (2011). DOI: 10.1093/hmg/ddr202
  23. N.E. Babady, Y.P. Pang, O. Elpeleg, G. Isaya. Proc. Nat. Acad. of Sci., 104 (15), 6158-6163 (2007). DOI: 10.1073/pnas.0610618104
  24. W.S. Kunz, W. Kunz. Biochim. et Biophys. Acta --- General Subjects, 841 (3), 237-246 (1985). DOI: 10.1016/0304-4165(85)90064-9
  25. S. Denicke, K.-H. Gericke, A.G. Smolin, P.S. Shternin, O.S. Vasyutinskii. J. Phys. Chem. A, 114, 9681-9692 (2010). DOI: 10.1021/jp101403x
  26. M.E. Sasin, A.G. Smolin, K.-H. Gericke, E. Tokunaga, O.S. Vasyutinskii. Phys. Chem. Chem. Phys., 20, 19922-19931 (2018). DOI: 10.1039/c8cp02708k
  27. I.A. Gorbunova, M.E. Sasin, J. Rubayo-Soneira, A.G. Smolin, O.S. Vasyutinskii. J. Phys. Chem. B, 124, 10682-10697 (2020). DOI: 10.1021/acs.jpcb.0c07620
  28. M.E. Sasin, I.A. Gorbunova, N.O. Bezverkhnii, Y.M. Beltukov, O.S. Vasyutinskii, J. Rubayo-Soneira. Tech. Phys. Lett., 45, 672-674 (2019). DOI: 10.1134/s1063785019070101
  29. J.R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, NY, 2006). DOI: 10.1007/978-0-387-46312-4
  30. I.A. Gorbunova, M.E. Sasin, Y.M. Beltukov, A.A. Semenov, O.S. Vasyutinskii. Phys. Chem. Chem. Phys., 22, 18155-18168 (2020). DOI: 10.1039/D0CP02496A
  31. M.K. Krasnopevtseva, V.P. Belik, I.V. Semenova, A.G. Smolin, A.A. Bogdanov, O.S. Vasyutinskii. Tech. Phys. Lett., 46 (6), 614-616 (2020). DOI: 10.1134/S1063785020060218
  32. M.S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, N. Ohta. Int. J. Mol. Sci., 14 (1), 1952-1963 (2013). DOI: 10.3390/ijms14011952
  33. T. Nakabayashi, M.S. Islam, N. Ohta. J. Phys. Chem. B, 114 (46), 15254-15260 (2010). DOI: 10.1021/jp1063066
  34. T. Toyoda, K. Suzuki, T. Sekiguchi, L.J. Reed, A. Takenaka. J. Biochem, 123, 668-674 (1998). DOI: 10.1093/oxfordjournals.jbchem.a021989
  35. L. Radoszkowicz, D. Huppert, E. Nachliel, M. Gutman. J. Phys. Chem. A, 114 (2), 1017-1022 (2010). DOI: 10.1021/jp908766e
  36. H. Grajek, I. Gryczynski, P. Bojarski, Z. Gryczynski, S. Bharill, L. Kulak. Chem. Phys. Lett., 439, 151-156 (2007). DOI: 10.1016/j.cplett.2007.03.042
  37. S. Chakraborty, M. Sakka, T. Kimura, K. Sakka. Biosci. Biotechnol. Biochem., 72 (4), 982-988 (2008). DOI: 10.1271/bbb.70724
  38. E. Szabo, A. Ambrus. Biologia Futura, 74 (1), 109-118 (2023). DOI: 10.1007/s42977-023-00155-6
  39. V. Massey, O. Gibson, C. Veeger. J. Biochem., 77, 341-351 (1960). DOI: 10.1042/bj0770341

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru