Plasmon control of molecules luminescence in the structure of an adsorbed polymer chain on the charged spherical nanoparticle surface
Kucherenko M.G. 1, Rusinov A.P. 1, Kruchinin N.Yu. 1
1Center of Laser and Information Biophysics, Orenburg State University, Orenburg, Russia
Email: clibph@yandex.ru, sano232@mail.ru, kruchinin_56@mail.ru

PDF
The formation of a stable conformational structure of a polyampholytic macromolecule during its adsorption on the surface of a plasmonic nanoparticle is considered. It is shown that the placement of an additional electric charge on a nanoparticle changes the architecture of the polymer superstructure, the degree of its looseness and, consequently, the order of distancing (localization) of phosphor molecules associated with the macrochain. This leads to a change in the emissivity of the system due to a change in the mode of plasmon assisting radiation transitions. This effect makes it possible to consider charge transfer to a nanoparticle as a factor of supramolecular structural control of the radiative properties of hybrid metal-polymer composites in functional nanodevices for various purposes. The performed molecular dynamic modeling of some polyampholytic polypeptides on a charged metal nanoparticle demonstrates the swelling of the polymer shell, which is structured in layers depending on the charge sign of the amino acid residue, and its thickness depends on the distance between the charged links in the macromolecule. Keywords: luminescence of molecules, polypeptide, adsorption, metal nanoparticle, plasmon resonance, polyampholite.
  1. C. Boyer, M.R. Whittaker, K. Chuah, J. Liu, T.P. Davis. Langmuir, 26, 2721 (2010). DOI: 10.1021/la902746v
  2. F. Yi, X. Huang, J. Ren. Anal. Chem., 90, 3871 (2018). DOI: 10.1021/acs.analchem.7b04569
  3. N.N. Heris, L. Baghani, F. Khonsari, R. Varshochian, R. Dinarvand, F. Atyabi. Journal of Drug Delivery Science and Technology, 87, 104869 (2023). DOI: 10.1016/j.jddst.2023.104869
  4. Z. Jin, J. Yeung, J. Zhou, M. Retout, W. Yim, P. Fajtova, B. Gosselin, I. Jabin, G. Bruylants, H. Mattoussi, A.J. O'Donoghue, J.V. Jokerst. ACS Appl. Mater. Interfaces, 15, 20483 (2023). DOI: 10.1021/acsami.3c00862
  5. K.M. Greskovich, K.M. Powderly, M.M. Kincanon, N.B. Forney, C.A. Jalomo, A. Wo, C.J. Murphy. Acc. Chem. Res., 56, 1553 (2023). DOI: 10.1021/acs.accounts.3c00109
  6. D.L. Amarasekara, C.S. Kariyawasam, M.A. Hejny, V.B. Torgall, T.A. Werfel, N.C. Fitzkee. ACS Appl. Mater. Interfaces, 16, 4321 (2024). DOI: 10.1021/acsami.3c13288
  7. Z. Jin, N. Dridi, G. Palui, V. Palomo, J.V. Jokerst, P.E. Dawson, Q.A. Sang, H. Mattoussi. J. Am. Chem. Soc., 145, 4570 (2023). DOI: 10.1021/jacs.2c12032
  8. T. Chiang, H. Hsiao. Talanta, 253, 123913 (2023). DOI: 10.1016/j.talanta.2022.123913
  9. N.Yu. Kruchinin, M.G. Kucherenko. Surfaces and Interfaces, 27, 101517 (2021). DOI: 10.1016/j.surfin.2021.101517
  10. N.Yu. Kruchinin, M.G. Kucherenko. Colloid Journal, 83, 591 (2021). DOI:10.1134/S1061933X21050070
  11. N.Yu. Kruchinin, M.G. Kucherenko. Colloid Journal, 84, 169 (2022). DOI: 10.1134/S1061933X22020077
  12. M.G. Kucherenko, N.Yu. Kruchinin, P.P. Neyasov. Eurasian Physical Technical Journal, 19, 19 (2022). DOI: 10.31489/2022No2/19-29
  13. N.Yu. Kruchinin, M.G. Kucherenko. High Energy Chemistry, 56, 499 (2022). DOI: 10.1134/S0018143922060108
  14. N.Yu. Kruchinin, M.G. Kucherenko. Polymer Science Series A, 65 (2), 224 (2023). DOI: 10.1134/S0965545X23700815
  15. A.S. de Dios, M.E. Di az-Garci a. Analytica Chimica Acta, 666, 1 (2010). DOI: 10.1016/j.aca.2010.03.038
  16. I. Pastoriza-Santos, C. Kinnear, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan. Nature Rev. Mater., 3, 375 (2018). DOI: 10.1038/s41578-018-0050-7
  17. V.V. Klimov. Nanoplazmonika (Fizmatlit, Moskva, 2009) (in Russian)
  18. N.Kh. Ibrayev, M.G. Kucherenko, D.A. Temirbayeva, E.V. Seliverstova. Opt. Spectrosc., 130 (5), 721 (2022). DOI: 10.21883/EOS.2022.05.54441.1-22
  19. A.Yu. Grosberg, A.R. Khokhlov. Statisticheskaya fizika makromolekul (Nauka, Moskva, 1989) (in Russian)
  20. S.F. Edvards. Proc. Phys. Soc., 85, 613 (1965)
  21. M.G. Kucherenko, T.M. Chmereva. Vestnik OGU, (9), 177 (2008) (in Russian)
  22. M.G. Kucherenko, N.Yu. Kruchilin, T.M. Chmereva. Vestnik OGU, (5), 124 (2010) (in Russian)
  23. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten. J. Comput. Chem. 26, 1781 (2005). DOI: 10.1002/jcc.20289
  24. A.D. Jr. MacKerell, D. Bashford, M. Bellott, Jr. R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher III, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus. J. Phys. Chem. B, 102, 3586 (1998). DOI: 10.1021/jp973084f
  25. H. Heinz, R.A. Vaia, B.L. Farmer, R.R. Naik. J. Phys. Chem. C, 112, 17281 (2008). DOI: 10.1021/jp801931d CCC: 40.75
  26. T. Darden, D. York, L. Pedersen. J. Chem. Phys., 98, 10089 (1993). DOI: 10.1063/1.464397
  27. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein. J. Chem. Phys., 79, 926 (1983). DOI: 10.1063/1.445869
  28. V.V. Klimov, M. Dyuklua, V.S. Letokhov. Kvant. elektron., 31(7), 569 (2001) (in Russian). DOI: 10.1070/QE2001v031n07ABEH002007
  29. M.G. Kucherenko, I.R. Alimbekov, P.P. Neyasov. Khimicheskaya Fizika i Mezoskopiya, 23 (3), 272 (2021). DOI: 10.1134/S106378422209002X

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru