Plasmon control of molecules luminescence in the structure of an adsorbed polymer chain on the charged spherical nanoparticle surface
Kucherenko M.G.
1, Rusinov A.P.
1, Kruchinin N.Yu.
11Center of Laser and Information Biophysics, Orenburg State University, Orenburg, Russia
Email: clibph@yandex.ru, sano232@mail.ru, kruchinin_56@mail.ru
The formation of a stable conformational structure of a polyampholytic macromolecule during its adsorption on the surface of a plasmonic nanoparticle is considered. It is shown that the placement of an additional electric charge on a nanoparticle changes the architecture of the polymer superstructure, the degree of its looseness and, consequently, the order of distancing (localization) of phosphor molecules associated with the macrochain. This leads to a change in the emissivity of the system due to a change in the mode of plasmon assisting radiation transitions. This effect makes it possible to consider charge transfer to a nanoparticle as a factor of supramolecular structural control of the radiative properties of hybrid metal-polymer composites in functional nanodevices for various purposes. The performed molecular dynamic modeling of some polyampholytic polypeptides on a charged metal nanoparticle demonstrates the swelling of the polymer shell, which is structured in layers depending on the charge sign of the amino acid residue, and its thickness depends on the distance between the charged links in the macromolecule. Keywords: luminescence of molecules, polypeptide, adsorption, metal nanoparticle, plasmon resonance, polyampholite.
- C. Boyer, M.R. Whittaker, K. Chuah, J. Liu, T.P. Davis. Langmuir, 26, 2721 (2010). DOI: 10.1021/la902746v
- F. Yi, X. Huang, J. Ren. Anal. Chem., 90, 3871 (2018). DOI: 10.1021/acs.analchem.7b04569
- N.N. Heris, L. Baghani, F. Khonsari, R. Varshochian, R. Dinarvand, F. Atyabi. Journal of Drug Delivery Science and Technology, 87, 104869 (2023). DOI: 10.1016/j.jddst.2023.104869
- Z. Jin, J. Yeung, J. Zhou, M. Retout, W. Yim, P. Fajtova, B. Gosselin, I. Jabin, G. Bruylants, H. Mattoussi, A.J. O'Donoghue, J.V. Jokerst. ACS Appl. Mater. Interfaces, 15, 20483 (2023). DOI: 10.1021/acsami.3c00862
- K.M. Greskovich, K.M. Powderly, M.M. Kincanon, N.B. Forney, C.A. Jalomo, A. Wo, C.J. Murphy. Acc. Chem. Res., 56, 1553 (2023). DOI: 10.1021/acs.accounts.3c00109
- D.L. Amarasekara, C.S. Kariyawasam, M.A. Hejny, V.B. Torgall, T.A. Werfel, N.C. Fitzkee. ACS Appl. Mater. Interfaces, 16, 4321 (2024). DOI: 10.1021/acsami.3c13288
- Z. Jin, N. Dridi, G. Palui, V. Palomo, J.V. Jokerst, P.E. Dawson, Q.A. Sang, H. Mattoussi. J. Am. Chem. Soc., 145, 4570 (2023). DOI: 10.1021/jacs.2c12032
- T. Chiang, H. Hsiao. Talanta, 253, 123913 (2023). DOI: 10.1016/j.talanta.2022.123913
- N.Yu. Kruchinin, M.G. Kucherenko. Surfaces and Interfaces, 27, 101517 (2021). DOI: 10.1016/j.surfin.2021.101517
- N.Yu. Kruchinin, M.G. Kucherenko. Colloid Journal, 83, 591 (2021). DOI:10.1134/S1061933X21050070
- N.Yu. Kruchinin, M.G. Kucherenko. Colloid Journal, 84, 169 (2022). DOI: 10.1134/S1061933X22020077
- M.G. Kucherenko, N.Yu. Kruchinin, P.P. Neyasov. Eurasian Physical Technical Journal, 19, 19 (2022). DOI: 10.31489/2022No2/19-29
- N.Yu. Kruchinin, M.G. Kucherenko. High Energy Chemistry, 56, 499 (2022). DOI: 10.1134/S0018143922060108
- N.Yu. Kruchinin, M.G. Kucherenko. Polymer Science Series A, 65 (2), 224 (2023). DOI: 10.1134/S0965545X23700815
- A.S. de Dios, M.E. Di az-Garci a. Analytica Chimica Acta, 666, 1 (2010). DOI: 10.1016/j.aca.2010.03.038
- I. Pastoriza-Santos, C. Kinnear, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan. Nature Rev. Mater., 3, 375 (2018). DOI: 10.1038/s41578-018-0050-7
- V.V. Klimov. Nanoplazmonika (Fizmatlit, Moskva, 2009) (in Russian)
- N.Kh. Ibrayev, M.G. Kucherenko, D.A. Temirbayeva, E.V. Seliverstova. Opt. Spectrosc., 130 (5), 721 (2022). DOI: 10.21883/EOS.2022.05.54441.1-22
- A.Yu. Grosberg, A.R. Khokhlov. Statisticheskaya fizika makromolekul (Nauka, Moskva, 1989) (in Russian)
- S.F. Edvards. Proc. Phys. Soc., 85, 613 (1965)
- M.G. Kucherenko, T.M. Chmereva. Vestnik OGU, (9), 177 (2008) (in Russian)
- M.G. Kucherenko, N.Yu. Kruchilin, T.M. Chmereva. Vestnik OGU, (5), 124 (2010) (in Russian)
- J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten. J. Comput. Chem. 26, 1781 (2005). DOI: 10.1002/jcc.20289
- A.D. Jr. MacKerell, D. Bashford, M. Bellott, Jr. R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher III, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus. J. Phys. Chem. B, 102, 3586 (1998). DOI: 10.1021/jp973084f
- H. Heinz, R.A. Vaia, B.L. Farmer, R.R. Naik. J. Phys. Chem. C, 112, 17281 (2008). DOI: 10.1021/jp801931d CCC: 40.75
- T. Darden, D. York, L. Pedersen. J. Chem. Phys., 98, 10089 (1993). DOI: 10.1063/1.464397
- W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein. J. Chem. Phys., 79, 926 (1983). DOI: 10.1063/1.445869
- V.V. Klimov, M. Dyuklua, V.S. Letokhov. Kvant. elektron., 31(7), 569 (2001) (in Russian). DOI: 10.1070/QE2001v031n07ABEH002007
- M.G. Kucherenko, I.R. Alimbekov, P.P. Neyasov. Khimicheskaya Fizika i Mezoskopiya, 23 (3), 272 (2021). DOI: 10.1134/S106378422209002X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.