Physics of the Solid State
Volumes and Issues
57Fe NMR study of layered chalcogenide Fe7S8
Kashnikova M.E. 1,2, Utkin N. A. 1,2, Ogloblichev V. V. 1, Sadykov A. F. 1, Smolnikov A.G. 1, Piskunov Yu. V. 1, Arapova I. Yu. 1, Selezneva N. V. 2, Baranov N. V. 1,2
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: ogloblichev@imp.uran.ru, sadykov@imp.uran.ru, smolnikov@imp.uran.ru, piskunov@imp.uran.ru, arapova@imp.uran.ru, n.v.selezneva@urfu.ru, baranov@imp.uran.ru

PDF
The paper presents the results of a nuclear magnetic resonance (NMR) study of the magnetically ordered phase of layered chalcogenide Fe7S8 (pyrrhotite) on iron nuclei 57Fe in a zero external magnetic field in the temperature range T=4.2-295 K. The obtained NMR spectra on the 57Fe nuclei represent several lines in the frequency range Δν=30-50 MHz. The absence of iron ions in the Fe3+ state in Fe7S8 is proven. The presence of several magnetically nonequivalent positions of iron ions, differing in the number and location of vacancies near them, is detected. The rates of spin-spin and spin-lattice relaxation of the nuclear magnetic moments of 57Fe are measured in different frequency regions of the spectrum at different temperatures. Local magnetic fields on iron nuclei are determined and the magnetic moment of Fe ions is estimated. It is shown that the 57Fe spectra in the Fe7S8 chalcogenide can be interpreted in the 4C-type superstructure model. The results obtained in this work expand the prospects for the use of NMR spectroscopy in the mining industry, in particular in the detection, separation and real-time selection of ore fragments containing pyrrhotite Fe7S8. Keywords: transition metal chalcogenides, layered defective structure, nuclear magnetic resonance, 57Fe, pyrrhotite, local magnetic field, 4C-type structure.
  1. H. Wang, I. Salveson. Phase Transitions 78, 547 (2005)
  2. A.V. Powell, P. Vaqueiro, K.S. Knight, L.C. Chapon, R.D. Sanchez. Phys. Rev. B 70, 014415 (2004)
  3. W. O'Reilly, V. Hoffmann, A.C. Chouker, H. C. Soffel, A. Menyeh. Geophys. J. Int. 142, 669 (2000)
  4. F. Li, H.F. Franzen, M.J. Kramer. J. Solid State Chem. 124, 264 (1996)
  5. N.V. Baranov, P.N.G. Ibrahim, N.V. Selezneva, V.A. Kazantsev, A.S. Volegov. D.A. Shishkin. Physica B: Condens. Matter 449, 229 (2014)
  6. N.V. Baranov, P.N.G. Ibrahim, N.V. Selezneva, A.F. Gubkin, A.S. Volegov, D.A. Shishkin, L. Keller, D. Sheptyakov, E.A. Sherstobitova. J. Phys. Condens. Matter 27, 286003 (2015)
  7. T. Ericsson, O. Amcoff, P. Nordblad. Hyperfine Interact. 90, 515 (1994)
  8. P. Terzieff. J. Phys. Chem. Solids 43, 305 (1982)
  9. J.R. Gosselin, M.G. Townsend, R.J. Tremblay, A.H. Webster. Mater. Res. Bull. 10, 41 (1975)
  10. D.J. Vaughan, M.S. Ridout. Solid State Commun. 8, 2165 (1970)
  11. L.M. Levinson, D. Treves. J. Phys. Chem. Solids 29, 2227 (1968)
  12. T.J. Bastow, A. Trinchi. Solid State Nucl. Magn. Reson. 35, 25 (2008)
  13. T.J. Bastow, A.J. Hill. J. Magn. Magn. Mater. 447, 58 (2018)
  14. J.A. Lehmann-Horn, D.G. Miljak, L.A. O'Dell, R. Yong, T.J. Bastow. Geophys. Res. Lett. 41, 6765 (2014)
  15. T.J. Bastow, A. Trinchi, M.R. Hill, R. Harris, T.H. Muster. J. Magn. Magn. Mater. 321, 2677 (2009)
  16. D.F. Akramov, N.V. Selezneva, P.N.G. Ibrahim, V.V. Maikov, E.M. Sherokalova, D.K. Kuznetsov, N.V. Baranov. Phys. Met. Metallogr. 123, 282 (2022)
  17. N. Selezneva, P. Ibrahim, N.M. Toporova, E.M. Sherokalova, N. Baranov. Acta Phys. Pol. A 133, 450 (2018)
  18. D. Koulialias, B. Lesniak, M. Schwotzer, P.G. Weidler, J.F. Loffler, A.U. Gehring. Geochem. Geophys. Geosystems 20, 5216 (2019)
  19. A.P. Gerashchenko, S.V. Verkhovsky, A.F. Sadykov, A.G. Smolnikov, Yu.V. Piskunov, K.N. Mikhalev. Certificate of state registration of a computer program N 2018663091. Simul 2018, Registered in the Register of Computer Programs on 22.10.2018
  20. C.P. Slichter. Principles of Magnetic Resonance. Springer Science \& Business Media, (1996). 658 p
  21. A. Abragam. The Principles of Nuclear Magnetism. Clarendon Press, (1961). 599 p
  22. A.M. Portis, A.C. Gossard. J. Appl. Phys. 31, S205 (1960)
  23. V.V. Ogloblichev, V.I. Izyurov, Y.V. Piskunov, A.G. Smol'nikov, A.F. Sadykov, S.A. Chuprakov, S.S. Dubinin, S.V. Naumov, A.P. Nosov. JETP Letters 114, 29 (2021)
  24. I. Letard, P. Sainctavit, C. Deudon. Phys. Chem. Miner. 34, 113 (2007)
  25. V.N. Antonov, L.V. Bekenov, A.P. Shpak, L.P. Germash, A.N. Yaresko, O. Jepsen. J. Appl. Phys. 106, 123907 (2009)
  26. A.J. Freeman, R.R. Frankel. Hyperfine Interactions. Academic Press, New York and London (1967). 758 p
  27. C. Haines, S. Dutton, M. Volk, M. Carpenter. J. Phys. Condens. Matter 32, 405401 (2020)
  28. E.J. Schwarz. J. Geomag. Geoelec. 20, 67 (1968)
  29. R. Benoit. J. Chim. Phys. 52, 119-132 (1955)
  30. M. Bin, R. Pauthenet. J. Appl. Phys. 34, 1161 (1963)
  31. J.B. Goodenough. J. Appl. Phys. 33, 1197 (1962)
  32. M. Tokonami, K. Nishiguchi, N. Morimoto. Am. Mineral. 57, 1066 (1972)
  33. E. Hirahara, M. Murakami. J. Phys. Chem. Solids 7, 281 (1958)
  34. C. Jeandey, J.L. Oddou, J.L. Mattei, G. Fillion. Solid State Commun. 78, 195 (1991)
  35. O. Kruse. Am. Mineral. 75, 755 (1990)
  36. Impul'snaya i fur'e-spektroskopiya YaMR. Per. s angl. B.A. Kvasov; pod red. E.I. Fedin. Mir, M. (1973). 164 p. (in Russian)
  37. H.Y. Carr, E.M. Purcell. Phys. Rev. 94, 630 (1954)
  38. S. Meiboom, D. Gill. Rev. Sci. Instrum. 29, 688 (1958).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru