Effects of thermomagnetic prehistory in the behavior of magnetization of a powder system of synthetic nanoferrihydrite in the presence of magnetic interparticle interactions
Balaev D A1, Krasikov A. A.1, Stolyar S. V.1,2, Yaroslavtsev R. N.1,2, Skorobogatov S. A.1, Velikanov D. A.1, Iskhakov R. S.1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
Email: dabalaev@iph.krasn.ru
The temperature dependences of the magnetization M(T) of two powder systems of ferrihydrite nanoparticles with identical sizes of ferrihydrite particles (average particle size is ~ 2.7 nm) and different intensities of magnetic interparticle interactions (MII) were studied. In addition to the commonly observed increase in the superparamagnetic blocking temperature T B (from 17 K to 50 K), MIIs clearly manifest themselves under different conditions and regimes of thermomagnetic prehistory. It was found that the rate of pre-cooling in an external magnetic field (in the used range of 1-10 K/min) affects the magnitude of the magnetization of the system at low temperatures and the shape of the M(T) dependence in the temperature range up to T B. This effect is significant for fairly weak external fields (up to ~ 300 Oe), and when the field increases to ~ 800 Oe, the cooling rate becomes insignificant for the magnitude of magnetization. In this case, for the range of external fields up to ~ 300 Oe, the M(T) dependences obtained during cooling in an external field and when heating the sample in the field (after pre-cooling) are different. For a system of ferrihydrite nanoparticles, in which the MIIs are weakened, these effects are absent. Analysis of the results obtained allowed us to propose the following scenario for the implementation of the detected thermomagnetic effects. In the presence of MIIs (in the temperature range below T B), the basic state of the structure of the magnetic moments of particles μ P is such that the vectors μ P of neighboring particles tend to be oriented predominantly against each other (anticollinearly). This takes place upon relatively "slow" cooling of the system (1 K/min), but upon "fast" cooling (10 K/min), i. e. "hardening" in an external field, the μ P vectors remain predominantly directed "along the field" as in the temperature region of the superparamagnetic state (at T > T B). The range of magnetic fields in which the described effects are observed is determined by the competition between the MII energy and the Zeeman energy μ P· H. Keywords: nanoferrihydrite, magnetic interparticle interactions, magnetization.
- V.F. Cardoso, A. Francesko, C. Ribeiro, M. Banobre-Lopez, P. Martins, S. Lanceros-Mendez. Advanced Healthcare Materials 7, 5, 1700845 (2017)
- Z. Ma, J. Mohapatra, K. Wei, J. Ping Liu, S. Sun. Chem. Rev. 123, 3904 (2023)
- M. Mohapatra, D. Hariprasad, L. Mohapatra, S. Anand, B. Mishra. Appl. Surf. Sci. 258, 10, 4228 (2012)
- F. B dker, S. M rup, S. Linderoth. Phys. Rev. Lett. 72, 282 (1994)
- F.G. Silva, J. Depeyrot, Yu.L. Raikher, V.I. Stepanov, I.S. Poperechny, R. Aquino, G. Ballon, J. Geshev, E. Dubois, R. Perzynski. Scientific Reports 11, 5474 (2021)
- D.A. Balaev, I.S. Poperechny, A.A. Krasikov, S.V. Semenov, S.I. Popkov, Y.V. Knyazev, V.L. Kirillov, S.S. Yakushkin, O.N. Martyanov, and Yu.L. Raikher. J. Phys. D: Appl. Phys. 54, 275003 (2021)
- I.G. Vazhenina, R.S. Iskhakov, L.A. Chekanova. Physics of the Solid State, 60, No 2, 292 (2018)
- A. Omelyanchik, M. Salvador, F. D'Orazio, V. Mameli, C. Cannas, D. Fiorani, A. Musinu, M. Rivas, V. Rodionova, G. Varvaro, D. Peddis. Nanomaterials 10, 1288 (2020)
- D.A. Balaev, A.A. Dubrovsky, Yu.V. Knyazev, S.V. Semenov, V.L. Kirillov, O.N. Martianov. Physics of the Solid State 65, No 6, 938 (2023)
- S. M rup, D.E. Madsen, C. Fradsen, C.R.H. Bahl, M.F. Hansen. J. Phys.: Condens. Matter 19, 213202 (2007)
- S. M rup, M.F. Hansen, C. Frandsen. Beilstein J. Nanotechnol. 1, 182 (2010)
- X. Batlle, C. Moya, M. Escoda-Torroellla, \`O. Iglesias, A.F. Rodr, A. Labarta. J. Magn. Magn. Mater. 543, 168594 (2022).
- M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin. Journal of Nanoscience and Nanotechnology 8, 2836 (2008)
- V. Russier. J. Magn. Magn. Mater. 409, 50 (2016)
- P.C. Rivas Rojas, P. Tancredi, O. Moscoso Londono, M. Knobel, L.M. Socolovsky. J. Magn. Magn. Mater. 451, 688 (2018)
- D.A. Balaev, S.V. Semenov, A.A. Dubrovskiy, S.S. Yakushkin, V.L. Kirillov, O.N. Martyanov. J. Magn. Magn. Mater. 440, 199 (2017)
- H.T. Yang, D. Hasegawa, M. Takahashi, T. Ogawa. Appl. Phys. Lett. 94, 013103 (2009)
- C.J. Bae, S. Angappane, J.-G. Park. Appl. Phys. Lett. 91, 102502 (2007)
- C.A.M. Vieira, R. Cabreira Gomes, F.G. Silva, A.L. Dias, R. Aquino, A.F.C. Campos, J. Depeyrot. J. Phys.: Condens. Matter 31, 175801 (2019)
- G.C. Papaefthymiou, E. Devlin, A. Simopoulos, D.K. Yi, S.N. Riduan, S.S. Lee, J.Y. Ying. Phys. Rev. B 80, 024406 (2009)
- Yu.V. Knyazev, D.A. Balaev, S.V. Stolyar, A.A. Krasikov, O.A. Bayukov, M.N. Volochaev, R.N. Yaroslavtsev, V.P. Ladygina, D.A. Velikanov, R.S. Iskhakov. Journal of Alloys and Compounds 889, 161623 (2021)
- D.A. Balaev, S.V. Stolyar, Yu.V. Knyazev, R.N. Yaroslavtsev, A.I. Pankrats, A.M. Vorotynov, A.A. Krasikov, D.A. Velikanov, O.A. Bayukov, V.P. Ladygina, R.S. Iskhakov. Results in Physics 35, 105340 (2022)
- F. Fabris, K.-H. Tu, C.A. Ross, W.C. Nunes. J. Appl. Phys. 126, 173905 (2019)
- S.V. Komogortsev, R.S. Iskhakov, V.A. Felk. J. Exp. Theor. Phys. 128, 754 (2019)
- T. Raczka, A. Wolf, J. Reichstein, C. Stauch, B. Schug, S. Mussig, K. Mandel. Journal of Magnetism and Magnetic Materials 598, 172042 (2024)
- O. Petracic. Superlattices and Microstructures 47, 569 (2010)
- O. Petracic, X. Chen, S. Bedanta, W. Kleemann, S. Sahoo, S. Cardoso, P.P. Freitas. J. Magn. Magn. Mater. 300, 192 (2006)
- K. Nadeem, H. Krenn, T. Traussnig, R.Wurschum, D.V. Szaboc, I. Letofsky-Papst. J. Magn. Magn. Mater. 323, 1998 (2011)
- J.A. Ramos-Guivar, A.C. Krohling, E.O. Lopez, F.J. Litterst, E.C. Passamani. J. Magn. Magn. Mater. 485, 142 (2019)
- M. Seehra, V.S. Babu, A. Manivannan. J. Lynn, Phys. Rev. B 61, 5, 3513-3518 (2000)
- N.J.O. Silva, V.S. Amaral, L.D. Carlos. Phys. Rev. B 71, 184408 (2005)
- A. Punnoose, T. Phanthavady, M. Seehra, N. Shah, G. Huffman. Phys. Rev. B 69 (5), 054425 (2004)
- Ch. Rani, S.D. Tiwari. Physica B 513, 58 (2017)
- C. Rani, S. Tiwari. Journ. Magn. Magn Mater. 385, 272-276 (2015)
- C. Rani, S.D. Tiwari. J. Magn. Magn. Mater. 587, 171341 (2023)
- S.I. Popkov, A.A. Krasikov, D.A. Velikanov, V.L. Kirillov, O.N. Martyanov, D.A. Balaev. J. Magn. Magn. Mater. 483, 21 (2019)
- D.A. Balaev, A.A. Krasikov, S.I. Popkov, S.V. Semenov, M.N. Volochaev, D.A. Velikanov, V.L. Kirillov, O.N. Martyanov. Journal of Magnetism and Magnetic Materials 539, 168343 (2021)
- T. Iimor, Y. Imamoto, N. Uchida, Y. Kikuchi, K. Honda, T. Iwahashi, Y. Ouch. J. Appl. Phys. 127, 023902 (2020).
- A.A. Krasikov, D.A. Balaev. J. Exp. Theor. Phys 136, No 1, pp. 97 (2023)
- A.A. Krasikov, D.A. Balaev, A.D. Balaev, S.V. Stolyar, R.N. Yaroslavtsev, R.S. Iskhakov. Journ. Magn. Magn. Mater. 592, 171781 (2024)
- M. Tadic, D. Nikolic, M. Panjan, G.R. Blake. Journal of Alloys and Compounds 647, 1061 (2015)
- E. Winkler, R.D. Zysler, D. Fiorani. Phys. Rev. B 70, 174406 (2004)
- C. Frandsen, S. M rup. Phys. Rev. Lett. 94, 027202 (2005)
- C. Frandsen, C.W. Ostenfeld, M. Xu, C.S. Jacobsen, L. Keller, K. Lefmann, S. M rup. Phys. Rev. B 70, 134416 (2004)
- E.L. Duarte, R. Itri, E. Lima Jr, M.S. Baptista, T.S. Berqu'o, G.F. Goya. Nanotechnology 17, 5549 (2006)
- T.S. Berquo, J.J. Erbs, A. Lindquist, R.L. Penn, S.K. Banerjee. J. Phys.: Condens. Matter 21, 176005 (2009)
- Yu.V. Knyazev, D.A. Balaev, R.N. Yaroslavtsev, A.A. Krasikov, D.A. Velikanov, Yu.L. Mikhlin, M.N. Volochaev, O.A. Bayukov, S.V. Stolyar, R.S. Iskhakov. Advances in Nano Research 12, 605 (2022)
- Yu.V. Knyazev, D.A. Balaev, S.A. Skorobogatov, D.A. Velikanov, O.A. Bayukov, S.V. Stolyar, V.P. Ladygina, A.A. Krasikov, R.S. Iskhakov. Physics of Metals and Metallography 125, 4, 377 (2024)
- Yu.V. Knyazev, D.A. Balaev, S.A. Skorobogatov, D.A. Velikanov, O.A. Bayukov, S.V. Stolyar, R.N. Yaroslavtsev, R.S. Iskhakov. Phys. Rev. B 107, 115413 (2023)
- D.A. Balaev, A.A. Krasikov, Y.V. Knyazev, R.N. Yaroslavtsev, D.A. Velikanov, Y.L. Mikhlin, M.N. Volochaev, O.A. Bayukov, V.P. Ladygina, S.V. Stolyar, R.S. Iskhakov. Nano-Structures \& Nano-Objects 37, 101089 (2024)
- A.A. Krasikov, Yu.V. Knyazev, D.A. Balaev, S.V. Stolyar, V.P. Ladygina, A.D. Balaev, R.S. Iskhakov. J. Exp. Theor. Phys. 137, (N 6), 903 (2023)
- A.A. Krasikov, Yu.V. Knyazev, D.A. Balaev, D.A. Velikanov, S.V. Stolyar, Yu.L. Mikhlin, R.N. Yaroslavtsev, R.S. Iskhakov. Physica B 660, 414301 (2023)
- M. Knobel, W.C. Nunes, H. Winnischofer, T.C.R. Rocha, L.M. Socolovsky, C.L. Mayorga, D. Zanchet. Journal of Non-Crystalline Solids 353, 743 (2007)
- D.A. Velikanov. Vestnik SibGAU 14, 2, 176 (2013). (in Russian)
- A.D. Balaev, Yu.V. Boyarshinov, M.M. Karpenko, B.P. Khrustalev. Instrum. Exp. Tech. (Engl. Transl.) 26 (3) [Prib. Tekh. Eksp. 3, 167 (1985)]
- N.J.O. Silva, V.S. Amaral, A. Urtizberea, R. Bustamante, A. Millan, F. Palacio, E. Kampert, U. Zeitler, S. de Brion, O. Iglesias, A. Labarta. Phys. Rev. B 84, 104427 (2011)
- D.A. Balaev, A.A. Krasikov, A.D. Balaev, S.V. Stolyar, V.P. Ladygina, R.S. Iskhakov. Physics of the Solid State 62, 1172--1178 (2020)
- F. Luis, E. del Barco, J.M. Hernandez, E. Remiro, J. Bartolome, J. Tejada. Phys. Rev. B 59, 11838 (1999)
- M. Suzuki, S.I. Fullem, I.S. Suzuki, L. Wang, Ch.-J. Zhong. Phys. Rev. B 79, 024418 (2009)
- K. Konwar, S.D. Kaushik, D. Sen, P. Deb. Phys. Rev. B 102, 174449 (2020)
- M. Sasaki, P.E. Jonsson, H. Takayama, H. Mamiya. Phys. Rev. B 71, 104405 (2005)
- J.A. De Toro, P.S. Normile, S.S. Lee, D. Salazar, J. Liang Cheong, P. Munniz, J.M. Riveiro, M. Hillenkamp, F. Tournus, A. Tamion, P. Nordblad. J. Phys. Chem. C 117, 10213 (2013).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.