Hot spots in circular and rectangular holes of plane-parallel dielectric resonators
Chetverikova A. P. 1, Solodovchenko N. S.1, Samusev K. B. 1,2, Bronnikov K. A.1, Limonov M. F. 1,2
1ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: alina.chetverikova@metalab.ifmo.ru, n.solodovchenko@metalab.ifmo.ru, k.samusev@mail.ioffe.ru, bronnikovkirill@gmail.com, m.limonov@mail.ioffe.ru
Hot spots are areas of local electromagnetic field enhancement that can be generated in submicron regions between two or more closely spaced metal or dielectric resonators. In this paper, we change the strategy of studying hot spots, demonstrating their occurrence inside dielectric resonators in extremely small air holes. The transformation and disappearance of the hotspot is analyzed numerically when the hole size increases to macroscopic values. Two cases are considered: hot spots in circular and rectangular holes of plane-parallel dielectric resonators. Keywords: local amplification of electromagnetic field, dielectric structures, Mie resonances, Fabry-Perot resonances.
- J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma. Nature Mater. 9, 3, 193 (2010). https://doi.org/10.1038/nmat2630
- E. Calandrini, A. Cerea, F. De Angelis, R. Proietti Zaccaria, A. Toma. Nanophotonics 8, 1, 45 (2019). https://doi.org/10.1515/nanoph-2018-0138
- M. Lorente-Crespo, L. Wang, R. Ortuno, C. Garci a-Meca, Y. Ekinci, A. Marti nez. Nano Lett. 13, 6, 2654 (2013). https://doi.org/10.1021/nl400798s
- S. Ding, J. Yi, J. Li, B. Ren, D. Wu, R. Panneerselvam, Z. Tian. Nature Rev. Mater. 1, 6, 16021 (2016). https://doi.org/10.1038/natrevmats.2016.21
- V.I. Kukushkin, A.B. Van'kov, I.V. Kukushkin. JETP Lett. 98, 2, 64 (2013). https://doi.org/10.1134/S0021364013150113
- J. Tittel, F. Knechtel, E. Ploetz. Adv. Funct. Mater. 34, 43, 2307518 (2024). https://doi.org/10.1002/adfm.202307518
- A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J.B. Zhang, B. Luk'yanchuk. Sci. Rep. 2, 1, 492 (2012). https://doi.org/10.1038/srep00492
- A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov. Nano Lett. 12, 7, 3749 (2012). https://doi.org/10.1021/nl301594s
- S. Person, M. Jain, Z. Lapin, J. Saenz, G. Wicks, L. Novotny. Nano Lett. 13, 4, 1806 (2013). https://doi.org/10.1021/nl4005018
- R. Won. Nature Photonics 13, 9, 585 (2019). https://doi.org/10.1038/s41566-019-0512-5
- Yu. Kivshar. Nano Lett. 22, 9, 3513 (2022). https://doi.org/10.1021/acs.nanolett.2c00548
- R.M. Bakker, D. Permyakov, Y.F. Yu, D. Markovich, R. Paniagua-Domi nguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk'yanchuk, A.I. Kuznetsov. Nano Lett. 15, 3, 2137 (2015). https://doi.org/10.1021/acs.nanolett.5b00128
- S. Tian, J. Wang, S. Sun, M. He, Y. Mao, Y. Gao, P. Ding. Res. Phys. 49, 106485 (2023). https://doi.org/10.1016/j.rinp.2023.106485
- C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light by Small Particles. Wiley (1998). https://doi.org/10.1002/9783527618156
- Y. Huang, Z. Zhen, Y. Shen, C. Min, G. Veronis. Opt. Express, 27, 2, 1310 (2019). https://doi.org/10.1364/OE.27.001310
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.