Amirov A. M.1, Akhmedov M. A. 1, Kubataev Z. Yu.1, Gafurov M. M.1, Rabadanov K. Sh.1, Ataev M. B.1, Kadiev M. V.1
1Dagestan Federal Research Center of the Russian Academy of Sciences, Kh.I. Amirkhanov Institute of Physics, Analytical Center for Collective Use, Makhachkala, Russia
Email: aamirov@mail.ru
The LiNO3-KNO3 nitrate eutectic was investigated at different additions of lithium perchlorate by methods of differential scanning calorimetry, X-ray diffraction and Raman spectroscopy, and data on electrical conductivity were obtained. It was found that the addition of lithium perchlorate to the nitrate eutectic leads to an increase in the specific ionic conductivity of the ternary salt system. It was found that with the increase of LiClO4 addition the melting peak of LiNO3-KNO3 eutectic decreases and for the composition with the initial content of 0.5LiClO4 the phase transition of LiNO3-KNO3 eutectic is not registered, which is associated with the exchange reaction between potassium nitrate and lithium perchlorate with the formation of KClO4 and LiNO3. This conclusion is confirmed by X-ray diffraction of the system and Raman spectra, from which it follows that with increasing LiClO4 addition the peak of full-symmetric valence vibration ν1(KNO3) decreases and the peak ν1(KClO4) is observed. When 0.5 mole fraction of LiClO4 is added, the ν1(KNO3) peak completely disappears. Keywords: alkali metal nitrates and perchlorates, ternary system, phase transitions, Raman scattering, X-ray phase analysis.
- Yu.K. Delimarsky, L.P. Barchuk. Prikladnaya himiya ionnyh rasplavov. Nauk. Dumka, Kiev (1988). 192 p. (in Russian)
- M.V. Laptev, A.V. Isakov, O.V. Grishenkova, A.S. Vorob'ev, A.O. Khudorozhkova, L.A. Akashev, Yu.P. Zaikov. J. Electrochem. Soc. 167, 4, 042506 (2020). DOI: 10.1149/1945-7111/ab7aec
- A.A. Naberezhnov, O.A. Alekseeva, A.V. Kudryavtseva, D.Yu. Chernyshov, T.Yu. Vergentyev, A.V. Fokin. FTT 64, 3, 365 (2022). (in Russian). https://journals.ioffe.ru/articles/52098
- H. Liu, X. Zhang, S. He, D. He, Y. Shang, H. Yu. Materials Today 60, 128 (2022). DOI: 10.1016/j.mattod.2022.09.005
- K. Jiang, Y. Shao, V. Smolenski, A. Novoselova, Q. Liu, M. Xu, Y. Yan, J. Yu, M. Zhang, J. Wang. J. Electroanal. Chem. 878, 114691 (2020). https://doi.org/10.1016/j.jelechem.2020.114691
- M.M. Gafurov, K.Sh. Rabadanov, M.B. Ataev, A.M. Amirov, Z.Yu. Kubataev, M.G. Kakagasanov. FTT 57, 10, 2011 (2015). (in Russian). https://journals.ioffe.ru/articles/viewPDF/42270
- K. Coscia, S. Nelle, T. Elliott, S. Mohapatra, A. Oztekin, S. Neti. J. Sol. Energy Eng. 135, 3, 034506 (2013). https://doi.org/10.1115/1.4024069
- F. Roget, C. Favotto, J. Rogez. Solar Energy 95, 155 (2013). https://doi.org/10.1016/j.solener.2013.06.008
- Z. Tong, L. Li, Y. Li, Q. Wang, X. Cheng. Materials 14, 19, 5737 (2021). DOI: 10.3390/ma14195737
- M.M. Gafurov, K.S. Rabadanov, M.B. Ataev, A.M. Amirov, M.A. Akhmedov, N.S. Shabanov, Z.Y. Kubataev, D.I. Rabadanova. Spectrochimica Acta 257, 119765 (2021). https://doi.org/10.1016/j.saa.2021.119765
- A.M. Amirov, S.I. Suleymanov, M.M. Gafurov, M.B. Ataev, K.S. Rabadanov. J. Therm. Anal. Calorim. 147, 17, 9283 (2022). https://doi.org/10.1007/s10973-022-11256-0
- K.Sh. Rabadanov, M.M. Gafurov, Z.Yu. Kubataev, A.M. Amirov, M.A. Akhmedov, N.S. Shabanov, M.B. Ataev. Elektrokhimiya 55, 6, 750 (2019). (in Russian). 10.1134/S0424857019060173
- M.B. Ataev, M.M. Gafurov, R.M. Emirov, K.S. Rabadanov, A.M. Amirov. FTT 58, 12, 2336 (2016). (in Russian). https://journals.ioffe.ru/articles/43850
- A.S. Ulihin, N.F. Uvarov, Y.G. Mateyshina, L.I. Brezhneva, A.A. Matvienko. Solid State Ionics 177, 26-32, 2787 (2006). DOI: 10.1016/j.ssi.2006.03.018
- M.M. Gafurov, K.S. Rabadanov. Appl. Spectrosc. Rev. 58, 7, 489 (2023). DOI: 10.1080/05704928.2022.2048305
- C. Vallet. J. Chem. Thermodyn. 4, 1, 105 (1972). https://doi.org/10.1016/S0021-9614(72)80013-2
- M. Guizani, H. Zamali, M. Jemal. C.R. Acad. Sci. Paris 1, 12, 787 (1998). https://doi.org/10.1016/S1251-8069(99)80047-4
- V.I. Posypayko, E.A. Alekseeva, N.A. Vasina. Diagrammy plavkosti solevyh sistem: spravochnik. Ch. III. Dvojnye sistemy s obshchim kationom. Metallurgiya, M. (1979). 204 p. (in Russian)
- M.M. Markowitz, D.A. Boryta, R.F. Harri. J. Phys. Chem. 65, 2, 261 (1961). https://doi.org/10.1021/j100820a018
- E.V. Nikolaeva, I.D. Zakiryanova, A.L. Bovet, I.V. Korzun. J. Electrochem. Soc. 168, 1, 016502 (2021). DOI: 10.1149/1945-7111/abd64a
- A.R. Aliev, M.M. Gafurov, I.R. Akhmedov, M.G. Kakagasanov, Z.A. Aliev. FTT 60, 6, 1191 (2018). (in Russian). https://journals.ioffe.ru/articles/viewPDF/45999
- G. Herzberg. Kolebatel'nye i vrashchatel'nye spektry mnogoatomnyh molekul. IL, M. (1949). 647 p. (in Russian)
- H. Qu, Z. Ling, X. Qi, Y. Xin, C. Liu, H. Cao. Sensors 21, 21, 6973 (2021). DOI: 10.3390/s21216973
- A.G. Kalampounias, S.A. Kirillov, W. Steffen, S.N. Yannopoulos. J. Mol. Struct. 651-653, 475 (2003). DOI: 10.1016/S0022-2860(03)00128-5
- A.G. Kalampounias. J. Phys. Chem. Sol. 73, 2, 148 (2012). DOI: 10.1016/j.jpcs.2011.11.014
- S.A. Kirillov. V kn.: Dinamicheskie svojstva molekul i kondensirovannyh sistem / Pod red. A.N. Lazareva. Nauka, L. (1988). P. 190. (in Russian)
- M.M. Gafurov, I.R. Akhmedov, A.R. Aliev. Zhurnal prikladnoy spektroskopii 52, 3, 429 (1990). (in Russian)
- A.M. Amirov, M.M. Gafurov, M.B. Ataev, K.Sh. Rabadanov. Appl. Solid State Chem. 3, 12 (2018)
- M.M. Gafurov, K.Sh. Rabadanov, A.M. Amirov, M.B. Ataev, Z.Yu. Kubataev, M.G. Kakagasanov. ZHurnal strukturnoj khimii 60, 3, 422 (2019). (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.