High-resolution spectroscopy of YAl3(BO3)4:Pr3+
Igolkina T. A. 1,2, Chukalina E. P. 1, Boldyrev K. N. 1, Gudim I. A. 3, Popova M. N. 1
1Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
3Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: igolkinata@isan.troitsk.ru, echukalina@isan.troitsk.ru, kn.boldyrev@gmail.com, irinagudim@mail.ru, popova@isan.troitsk.ru

PDF
Optical absorption spectra of YAl3(BO3)4:Pr3+ crystals in the temperature range of 5-300 K in polarized light were studied by high-resolution Fourier spectroscopy (up to 0.1 cm-1). The energies of crystal-field sublevels of 12 multiplets of the Pr3+ ion were determined. The observed splitting of a number of spectral lines corresponding to singlet-doublet transitions is due to the influence of random lattice deformations. The complex structure of the singlet-singlet transition line to the 3P0 level is explained by the presence of additional centers "Pr3+ ion near a lattice defect". Presumably, such defects are uncontrolled impurities entering the crystal during its growth by solution-melt technique. Keywords: YAl3(BO3)4:Pr3+ in yttrium aluminum borate, crystal-field levels, high-resolution Fourier spectroscopy, deformation splitting.
  1. A.M. El-Naggar, N.S. Alzayed, A. Majchrowski, L. Jaroszewicz, M.G. Brik, W. Kuznik, I.V. Kityk. J. Cryst. Growth, 334,(1), 122-125 (2011). DOI: 10.1016/j.jcrysgro.2011.08.037
  2. N. Navya, B.R.R. Krushna, S.C. Sharma, N.R. Nadar, M. Panda, A. George, C. Krithika, S. Rajeswari, R. Vanithamani, K. Madhavi, G. Ramakrishna, K. Manjunatha, S.Y. Wu, H. Nagabhushana. J. Photochem. Photobiol. A: Chem., 456, 115858 (2024). DOI: 10.1016/j.jphotochem.2024.115858
  3. N. Rebrova, A. Grippa, P. Zdeb, P.J. Deren. Scr. Mater., 255, 116395 (2025). DOI: 10.1016/j.scriptamat.2024.116395
  4. Y. Hua. Ceram. Int., 50 (18, Part A), 32353-32361 (2024). DOI: 10.1016/j.ceramint.2024.06.043
  5. T. Gun, P. Metz, G. Huber. Appl. Phys. Lett., 99 (18), 181103 (2011). DOI: 10.1063/1.3657150
  6. P.W. Metz, S. Muller, F. Reichert, D.-T. Marzahl, F. Moglia, C. Krankel, G. Huber. Opt. Express, 21 (25), 31274-31281 (2013). DOI: 10.1364/OE.21.031274
  7. S. Fujita, H. Tanaka, F. Kannari. Appl. Opt., 59 (17), 5124-5130 (2020). DOI: 10.1364/AO.394792
  8. F. Cassouret, M. Badtke, P. Loiseau, G. Aka. Opt. Express, 31, 12497 (2023). DOI: 10.1364/OE.487749
  9. Z. Zhang, W. Yuan, R. Fang, Z. Li, H. Xu, Z. Cai. Opt. Commun., 566, 130726 (2024). DOI: 10.1016/j.optcom.2024.130726
  10. P. Goldner, O. Guillot-Noel. Mol. Phys., 102 (11-12), 1185-1192 (2004). DOI: 10.1080/00268970410001728744
  11. E. Fraval, M.J. Sellars, J.J. Longdell. Phys. Rev. Lett., 92, 077601 (2004). DOI: 10.1103/PhysRevLett.92.077601
  12. G.J. Pryde, M.J. Sellars, N.B. Manson. Phys. Rev. B, 69 (7), 075107 (2004). DOI: 10.1103/PhysRevB.69.075107
  13. E. Fraval, M.J. Sellars, J.J. Longdell. Phys. Rev. Lett., 95 (3), 030506 (2005). DOI: 10.1103/PhysRevLett.95.030506
  14. J.J. Longdell, E. Fraval, M.J. Sellars, N.B. Manson. Phys. Rev. Lett., 95 (6), 063601 (2005). DOI: 10.1103/PhysRevLett.95.063601
  15. O. Guillot-Noel, Ph. Goldner, Y. Le Du, P. Loiseau. Phys. Rev. B, 75 (20), 205110 (2007). DOI: 10.1103/PhysRevB.75.205110
  16. G. Heinze, C. Hubrich, T. Halfmann. Phys. Rev. A, 89 (5), 053825 (2014). DOI: 10.1103/PhysRevA.89.053825
  17. N.I. Leonyuk, L.I. Leonyuk. Prog. Cryst. Growth Charact. Mater., 31 (3-4), 179-278 (1995). DOI: 10.1016/0960-8974(96)83730-2
  18. E.V. Koporulina, N.I. Leonyuk, S.N. Barilo, L.A. Kurnevich, G.L. Bychkov, A.V. Mokhov, G. Bocelli, L. Righi. J. Cryst. Growth., 198, 460-465 (1999). DOI: 10.1016/S0022-0248(98)01228-7
  19. V.V. Maltsev, E.A. Volkova, D.D. Mitina, N.I. Leonyuk, A.B. Kozlov, A.V. Shestakov. Inorg. Mater., 56, 612-625 (2020). DOI: 10.1134/S0020168520060084
  20. S. Ilas, P. Loiseau, G. Aka, T. Taira. Opt. Express, 22 (24), 30325 (2014). DOI: 10.1364/OE.22.030325
  21. B.C. Jamalaiah, N. Madhu, A.S.N. Reddy, P. Gawas, V. Nutalapati. Optik (Stuttg.), 268, 169744 (2022). DOI: 10.1016/j.ijleo.2022.169744
  22. M.H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, M. Bettinelli. Spectrochim. Acta A, 57, 1981-1990 (2001). DOI: 10.1016/S1386-1425(01)00484-X
  23. M. Mazzera, A. Baraldi, E. Buffagni, R. Capelletti, E. Beregi, I. Foldvari, N. Magnani. Appl. Phys. B, 104, 603-617 (2011). DOI: 10.1007/s00340-011-4421-7
  24. I.A. Gudim, E.V. Eremin, V.L. Temerov. J. Cryst. Growth, 312 (16-17), 2427-2430 (2010). DOI: 10.1016/j.jcrysgro.2010.05.013
  25. M.N. Popova, K.N. Boldyrev, P.O. Petit, B. Viana, L.N. Bezmaternykh. J. Phys.: Condens. Matter, 20 (45), 455210 (2008). DOI: 10.1088/0953-8984/20/45/455210
  26. K.N. Boldyrev, M.N. Popova, M. Bettinelli, V.L. Temerov, I.A. Gudim, L.N. Bezmaternykh, P. Loiseau, G. Aka, N.I. Leonyuk. Opt. Mat., 34 (11), 1885-1889 (2012). DOI: 10.1016/j.optmat.2012.05.021
  27. B.Z. Malkin, D.S. Pytalev, M.N. Popova, E.I. Baibekov, M.L. Falin, K.I. Gerasimov, N.M. Khaidukov. Phys. Rev. B: Condens. Matter, 86 (13), 134110 (2012). DOI: 10.1103/PhysRevB.86.134110
  28. B.Z. Malkin, N.M. Abishev, E.I. Baibekov, D.S. Pytalev, K.N. Boldirev, M.N. Popova, M. Bettinelli. Phys. Rev. B, 96 (1), 014116 (2017). DOI: 10.1103/PhysRevB.96.014116

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru