Alkali-metals flash duration during multibubble sonoluminescence from aqueous solutions of their salts determined using time-correlated single photon counting
Kazachek M. B. 1, Gordeychuk T. V.1
1V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
Email: mihail@poi.dvo.ru, tanya@poi.dvo.ru

PDF
The time-correlated single photon counting method (TCSPC) was used for determining the flash duration of alkali-metal atomic lines of Na (589 nm), Li (671 nm), K (767 nm), Rb (780 nm) during multibubble sonoluminescence from alkali-metal chloride salts aqueous solutions. Measurements showed the values of 5 to 40 ns for different metals and different experimental conditions. Both the increase in the atomic mass by 12 times in a series Li, Na, K, Rb and the decrease in the excitation energy of the metal by a third in the series Na, Li, K, Rb resulted in the flash duration increasing approximately twofold. For all metals the flash duration was approximately twice as long in the narrow range of Δ λ ~ 5 nm, which included the spectral line, as compared with the wide range of Δ λ ~ 200 nm around the line. The increase of concentration of Na, K, Rb salt solutions from 1 to 3 M resulted in a decrease in flash duration by about a quarter. The addition of a surfactant (sodium dodecyl sulfate) to metals salt low concentrated solutions (2 mM) led to increase of flash duration approximately twice in comparable to high concentration solutions for all metals. Possible explanations of the results are proposed. Keywords: sonoluminescence, metal flash duration, correlation method.
  1. B. Gompf, R. Gunter, G. Nick, R. Pecha, W. Eisenmenger. Phys. Rev. Lett., 79 (7), 1405 (1997). DOI: 10.1103/PhysRevLett.79.1405
  2. I. Ko, H.-Y. Kwak. J. Phys. Soc. Japan, 79 (12), 124401 (2010). DOI: 10.1143/JPSJ.79.124401
  3. M.V. Kazachek, T.V. Gordeychuk. Instrum. Exp. Tech., 62 (1), 26 (2019). DOI: 10.1134/S0020441219010081
  4. T.V. Gordeychuk, M.V. Kazachek. Opt. Spectrosc., 128 (10), 1602 (2020). DOI: 10.1134/S0030400X20100124
  5. M.V. Kazachek, T.V. Gordeychuk. Tech. Phys. Lett., 46 (3), 263 (2020). DOI: 10.1134/S1063785020030232
  6. M.V. Kazachek, T.V. Gordeychuk. Opt. Spectrosc., 129 (9), 1283 (2021). DOI: 10.1134/S0030400X20100124
  7. M.V. Kazachek. Instrum. Exp. Tech., 66 (6), 1066 (2023). DOI: 10.1134/S0020441223040024
  8. M.V. Kazachek, T.V. Gordeychuk. Opt. Spectrosc., 131 (9), 1175 (2023). DOI: 10.61011/EOS.2023.09.57345.5274-23
  9. M.V. Kazachek, T.V. Gordeychuk. Tech. Phys. Lett., 37 (3), 262 (2011). DOI: 10.1134/S1063785011030242
  10. Y. Hayashi, P.-K. Choi. Ultrason. Sonochem., 23, 333 (2015). DOI: 10.1016/j.ultsonch.2014.07.012
  11. R. Nakajima, Y. Hayashi, P.-K. Choi. Japan. J. Appl. Phys., 54, 07HE02 (2015). DOI: 10.7567/JJAP.54.07HE02
  12. P.-K. Choi, K. Takumori, H.-B. Lee. Ultrason. Sonochem., 38, 154 (2017). DOI: 10.1016/j.ultsonch.2017.03.015
  13. F. Lepoint-Mullie, N. Voglet, T. Lepoint, R. Avni. Ultrason. Sonochem., 8, 151 (2001). DOI: 10.1016/S1350-4177(00)00030-4
  14. Y.T. Didenko, S.P. Pugach. J. Phys. Chem., 98, 9742 (1994)
  15. Y.T. Didenko, W.B. McNamara III, K.S. Suslick. J. Phys. Chem.A, 103, 10783 (1999)
  16. M.V. Kazachek, T.V. Gordeychuk. Acoustical Phys., 70 (4), 619 (2024). DOI: 10.1134/S1063771024601778
  17. D.J. Flannigan, K.S. Suslick. Phys. Rev. Lett., 99, 134301 (2007). DOI: 10.1103/PhysRevLett.99.134301
  18. J.B. Young, J.A. Nelson, W. Kang. Phys. Rev. Lett., 86 (12), 2673 (2001). DOI: 10.1103/PhysRevLett.86.2673
  19. H.-C. Chu, S. Vo, G.A. Williams. Phys. Rev. Lett., 102, 204301 (2009). DOI: 10.1103/PhysRevLett.102.204301
  20. M.G. Woldring. Anal. Chim. Acta, 8, 150 (1953). DOI: 10.1016/S0003-2670(00)87624-2
  21. C.Th.J. Alkemade, Tj. Hollander, W. Snelleman, P.J.Th. Zeegers. Metal vapours in flames (Pergamon Press, 1982). DOI: 10.1002/bbpc.19830871140
  22. A. Brotchie, F. Grieser, M. Ashokkumar. Phys. Rev. Lett., 102, 084302 (2009). DOI: 10.1103/PhysRevLett.102.084302
  23. D. Sunartio, K. Yasui, T. Tuziuti, T. Kozuka, Y. Iida, M. Ashokkumar, F. Grieser. Chem. Phys. Chem., 8, 2331 (2007). DOI: 10.1002/cphc.200700426
  24. S.-i. Hatanaka, S. Hayashi, P.-K. Choi. Japan. J. Appl. Phys., 49 (7S), 07HE01 (2010). DOI: 10.1143/JJAP.49.07HE01
  25. R. Pflieger, J. Lee, S.I. Nikitenko, M. Ashokkumar. J. Phys. Chem. B, 119, 12682 (2015). DOI: 10.1021/acs.jpcb.5b08723
  26. T.V. Gordeychuk, M.V. Kazachek. Russ. J. Phys. Chem. A, 93 (5), 1000 (2019). DOI: 10.1134/S003602441905011X
  27. M.V. Kazachek, T.V. Gordeychuk. Tech. Phys. Lett., 39 (11), 972 (2013). DOI: 10.1134/S1063785013110060
  28. J. Lee, M. Ashokkumar, S. Kentish, F. Grieser. J. Am. Chem. Soc., 127, 16810 (2005). DOI: 10.1021/ja0566432
  29. J. Lee, S.E. Kentish, M. Ashokkumar. J. Phys. Chem. B, 109, 5095 (2005). DOI: 10.1021/jp0476444
  30. A.M. Brodsky, L.W. Burgess, A.L. Robinson. Phys. Lett. A, 287, 409 (2001). DOI: 10.1016/S0375-9601(01)00511-4
  31. P.-K. Choi, S. Abe, Y. Hayashi. J. Phys. Chem. B, 112, 918 (2008). DOI: 10.1021/jp709661z

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru