Alkali-metals flash duration during multibubble sonoluminescence from aqueous solutions of their salts determined using time-correlated single photon counting
Kazachek M. B. 1, Gordeychuk T. V.1
1V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
Email: mihail@poi.dvo.ru, tanya@poi.dvo.ru
The time-correlated single photon counting method (TCSPC) was used for determining the flash duration of alkali-metal atomic lines of Na (589 nm), Li (671 nm), K (767 nm), Rb (780 nm) during multibubble sonoluminescence from alkali-metal chloride salts aqueous solutions. Measurements showed the values of 5 to 40 ns for different metals and different experimental conditions. Both the increase in the atomic mass by 12 times in a series Li, Na, K, Rb and the decrease in the excitation energy of the metal by a third in the series Na, Li, K, Rb resulted in the flash duration increasing approximately twofold. For all metals the flash duration was approximately twice as long in the narrow range of Δ λ ~ 5 nm, which included the spectral line, as compared with the wide range of Δ λ ~ 200 nm around the line. The increase of concentration of Na, K, Rb salt solutions from 1 to 3 M resulted in a decrease in flash duration by about a quarter. The addition of a surfactant (sodium dodecyl sulfate) to metals salt low concentrated solutions (2 mM) led to increase of flash duration approximately twice in comparable to high concentration solutions for all metals. Possible explanations of the results are proposed. Keywords: sonoluminescence, metal flash duration, correlation method.
- B. Gompf, R. Gunter, G. Nick, R. Pecha, W. Eisenmenger. Phys. Rev. Lett., 79 (7), 1405 (1997). DOI: 10.1103/PhysRevLett.79.1405
- I. Ko, H.-Y. Kwak. J. Phys. Soc. Japan, 79 (12), 124401 (2010). DOI: 10.1143/JPSJ.79.124401
- M.V. Kazachek, T.V. Gordeychuk. Instrum. Exp. Tech., 62 (1), 26 (2019). DOI: 10.1134/S0020441219010081
- T.V. Gordeychuk, M.V. Kazachek. Opt. Spectrosc., 128 (10), 1602 (2020). DOI: 10.1134/S0030400X20100124
- M.V. Kazachek, T.V. Gordeychuk. Tech. Phys. Lett., 46 (3), 263 (2020). DOI: 10.1134/S1063785020030232
- M.V. Kazachek, T.V. Gordeychuk. Opt. Spectrosc., 129 (9), 1283 (2021). DOI: 10.1134/S0030400X20100124
- M.V. Kazachek. Instrum. Exp. Tech., 66 (6), 1066 (2023). DOI: 10.1134/S0020441223040024
- M.V. Kazachek, T.V. Gordeychuk. Opt. Spectrosc., 131 (9), 1175 (2023). DOI: 10.61011/EOS.2023.09.57345.5274-23
- M.V. Kazachek, T.V. Gordeychuk. Tech. Phys. Lett., 37 (3), 262 (2011). DOI: 10.1134/S1063785011030242
- Y. Hayashi, P.-K. Choi. Ultrason. Sonochem., 23, 333 (2015). DOI: 10.1016/j.ultsonch.2014.07.012
- R. Nakajima, Y. Hayashi, P.-K. Choi. Japan. J. Appl. Phys., 54, 07HE02 (2015). DOI: 10.7567/JJAP.54.07HE02
- P.-K. Choi, K. Takumori, H.-B. Lee. Ultrason. Sonochem., 38, 154 (2017). DOI: 10.1016/j.ultsonch.2017.03.015
- F. Lepoint-Mullie, N. Voglet, T. Lepoint, R. Avni. Ultrason. Sonochem., 8, 151 (2001). DOI: 10.1016/S1350-4177(00)00030-4
- Y.T. Didenko, S.P. Pugach. J. Phys. Chem., 98, 9742 (1994)
- Y.T. Didenko, W.B. McNamara III, K.S. Suslick. J. Phys. Chem.A, 103, 10783 (1999)
- M.V. Kazachek, T.V. Gordeychuk. Acoustical Phys., 70 (4), 619 (2024). DOI: 10.1134/S1063771024601778
- D.J. Flannigan, K.S. Suslick. Phys. Rev. Lett., 99, 134301 (2007). DOI: 10.1103/PhysRevLett.99.134301
- J.B. Young, J.A. Nelson, W. Kang. Phys. Rev. Lett., 86 (12), 2673 (2001). DOI: 10.1103/PhysRevLett.86.2673
- H.-C. Chu, S. Vo, G.A. Williams. Phys. Rev. Lett., 102, 204301 (2009). DOI: 10.1103/PhysRevLett.102.204301
- M.G. Woldring. Anal. Chim. Acta, 8, 150 (1953). DOI: 10.1016/S0003-2670(00)87624-2
- C.Th.J. Alkemade, Tj. Hollander, W. Snelleman, P.J.Th. Zeegers. Metal vapours in flames (Pergamon Press, 1982). DOI: 10.1002/bbpc.19830871140
- A. Brotchie, F. Grieser, M. Ashokkumar. Phys. Rev. Lett., 102, 084302 (2009). DOI: 10.1103/PhysRevLett.102.084302
- D. Sunartio, K. Yasui, T. Tuziuti, T. Kozuka, Y. Iida, M. Ashokkumar, F. Grieser. Chem. Phys. Chem., 8, 2331 (2007). DOI: 10.1002/cphc.200700426
- S.-i. Hatanaka, S. Hayashi, P.-K. Choi. Japan. J. Appl. Phys., 49 (7S), 07HE01 (2010). DOI: 10.1143/JJAP.49.07HE01
- R. Pflieger, J. Lee, S.I. Nikitenko, M. Ashokkumar. J. Phys. Chem. B, 119, 12682 (2015). DOI: 10.1021/acs.jpcb.5b08723
- T.V. Gordeychuk, M.V. Kazachek. Russ. J. Phys. Chem. A, 93 (5), 1000 (2019). DOI: 10.1134/S003602441905011X
- M.V. Kazachek, T.V. Gordeychuk. Tech. Phys. Lett., 39 (11), 972 (2013). DOI: 10.1134/S1063785013110060
- J. Lee, M. Ashokkumar, S. Kentish, F. Grieser. J. Am. Chem. Soc., 127, 16810 (2005). DOI: 10.1021/ja0566432
- J. Lee, S.E. Kentish, M. Ashokkumar. J. Phys. Chem. B, 109, 5095 (2005). DOI: 10.1021/jp0476444
- A.M. Brodsky, L.W. Burgess, A.L. Robinson. Phys. Lett. A, 287, 409 (2001). DOI: 10.1016/S0375-9601(01)00511-4
- P.-K. Choi, S. Abe, Y. Hayashi. J. Phys. Chem. B, 112, 918 (2008). DOI: 10.1021/jp709661z
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.