Changes in the optical properties of butyl-substituted zinc phthalocyanine in interaction with ammonia
Rasmagin S.I. 1, Kraovskii V.I.1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: rasmas123@yandex.ru

PDF
Solutions of butyl-substituted zinc phthalocyanine in tetrahydrofuran and mixed solutions of butyl-substituted zinc phthalocyanine in tetrahydrofuran with an aqueous solution of ammonia were prepared. The light absorption spectra of the initial and mixed solutions of butyl-substituted zinc phthalocyanine were measured. The light absorption spectra of the initial and mixed solutions of butyl-substituted zinc phthalocyanine were analyzed. As a result of the research, the effect of ammonia molecules on butyl-substituted zinc phthalocyanine molecules in mixed solutions was found, which manifested itself in a change in the parameters of the light absorption spectra. It is shown that ammonia molecules slightly increase the absorption of light in the Q-band, practically do not change the half-width of the absorption spectra and slightly reduce the energy of electronic transitions characteristic of the Q and B-bands. A possible explanation of the effect of ammonia on the parameters of the light absorption spectra in butyl-substituted zinc phthalocyanine molecules is given. Keywords: zinc phthalocyanine, absorption spectra, tetrahydrofuran, ammonia, molecular orbitals.
  1. R. Bonnett. Chem. Soc. Rev., 24, 19 (1995)
  2. V.B. Loschenov, V.I. Konov, A.M. Prokhorov. Laser Phys., 10, 1188 (2000)
  3. D. Hone, P. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M.J. Cook, D.A. Russell. Langmuir, 18, 2985 (2002)
  4. M.G. Walter, A.B. Rudine, C.C. Wamser. JPP, 14, 759 (2010)
  5. N. Sekar, V. Ghelot. Resonance, 15, 819 (2010). DOI: 10.12691/pmc-3-1-1
  6. F.I. Bohrer, C.N. Colesniuc, J. Park, M.E. Ruidiaz, I.K. Schuller, A.C. Kummel, W.C. Trogler. Am. Chem. Soc., 131, 478 (2009)
  7. M. Debliquy, D. Lahem, A. Bueno-Martinez, C. Caucheteur. Sensors, 18 (3), 740, 1 (2018). DOI: 10.3390/s18030740
  8. S.I. Rasmagin. Opt. i spektr., 131 (12), 1633 (2023) (in Russian). DOI: 10.61011/OS.2023.12.57397.5187-23
  9. E. Van Faassen, H. Kerp. Sensors and Actuators B, 88, 329-333 (2003)
  10. S.I. Rasmagin. Phys. Wave Phenomena, 31 (2), 74 (2023). DOI: 10.3103/S1541308X23020097
  11. T.N. Mogileva, I.P. Angelov, V.N. Mantareva, I.Z. Eneva, G.M. Mikheev. Khimicheskaya fizika i mezoskopiya (in Russian). 18 (2), 281 (2016)
  12. G. Chaidogiannos, F. Petraki, N. Glezos, S. Kennou, S. Nev spourek. Appl. Phys. A: Mater. Sci. Process, 96, 763 (2009)
  13. R. Aroca, D. Dilella. Phys. Chem. Solids, 43 (8), 707 (1982)
  14. A.Ya. Zheltov, V.P. Perevalov. Osnovy teorii cvetnosti organicheskih soedinenij, uchebn. posobie (RHTU im. D.I. Mendeleeva, M., 2012), p. 347 (in Russian)
  15. V. Kavelin, O. Fesenko, H. Dubyna, C. Vidal, T.A. Klar, C. Hrelescu, L. Dolgov. Nanoscale Research Lett., 12 (1), 197 (2017). DOI: 10.1186/s11671-017-1972-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru