Graphene oxides as sorbents for purification and separation of liquids: a physicochemical study
A.V. Kaplin1,2, E.A. Eremina1, Ivanov A.V.1, Divitskaya D.A.1, Avdeev V.V.1, Astvatsaturov D.A.1,2, Dvoryak S.V.1, Khrykina O. N.3, Filippova T.V.1, korobov M.V.1
1Lomonosov Moscow State University, Moscow, Russia
2 N.N. SEMENOV FEDERAL RESEARCH CENTER FOR CHEMICAL PHYSICS RUSSIAN ACADEMY OF SCIENCES, Moscow, Russia
3Kurchatov Institute Research Center, Federal Research Center for Crystallography and Photonics of the Russian Academy of Sciences, Moscow, Russia
Email: alex1997kaplin@mail.ru
The features of sorption properties of oxidized graphite materials with respect to polar and non-polar liquids were examined. The sorption properties of a highly oxidized material (graphene oxide synthesized by the improved Hummers' method) and weakly oxidized thermally expanded graphite were compared directly. Differences in a number of physicochemical parameters were confirmed by X-ray diffraction analysis, infrared spectroscopy, X-ray photoelectron spectroscopy, and differential scanning calorimetry. Graphene oxide synthesized by the Hummers' method with ratio C/O~ 2.5 sorbs only polar liquids. Thermally expanded graphite, which was synthesized via heat processing of electrochemically oxidized graphite, with C/O~ 9.5 sorbs both polar and non-polar liquids. Differential scanning calorimetry was used to demonstrate that the parameters of sorption of polar liquids are comparable within the error limits for materials that differ significantly in their degree of oxidation. It was found that water sorption by materials based on thermally expanded graphite does not lead to their swelling. The capacity to maintain a constant interplanar spacing in interaction with aqueous media may make thermally expanded graphite a promising material for the fabrication of membranes for removal of impurities from water. Keywords: graphene oxide, thermally expanded graphite, sorption, swelling.
- A. Iakunkov, A.V. Talyzin. Nanoscale, 12, 21060-93 (2020). DOI: 10.1039/d0nr04931j
- J.I. Paredes, S. Villar-Rodil, A. Marti nez-Alonso, J.M.D. Tascon. Langmuir, 24, 10560 (2008)
- M.V. Korobov, A.V. Talyzin, A.T. Rebrikova, E.A. Shilayeva, N.V. Avramenko, A.N. Gagarin, N.B. Ferapontov. Carbon, 102, 297 (2016)
- B.C. Brodie. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London. 149, 249 (1859)
- W.S. Hummers, R.E. Offeman. J. American Chem. Society, 80, 1339 (1958)
- A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour. ASC Nano, 4, 2059 (2010)
- A.V. Talyzin, G. Mercier, A. Klechikov, M. Hedenstrom, D. Johnels, D. Wei, D. Cotton, A. Opitz, E. Moons. Carbon, 115, 430 (2017)
- A.V. Kaplin, A.T. Rebrikova, E.A. Eremina, N.A. Chumakova, N.V. Avramenko, M.V. Korobov. Membranes, 53 (13), 1 (2023)
- A.T. Rebrikova, A. Klechikov, A. Iakunkov, J. Sun, A.V. Talyzin, N.V. Avramenko, M.V. Korobov. J. Phys. Chem. C, 124, 23410 (2020)
- S.J. You, S.M. Luzan, T. Szabo, A.V. Talyzin. Carbon, 52, 171 (2013)
- C. Cabrillo, F. Barroso-Bujans, R. Fernandez-Perea, F. Fernandez-Alonso, D. Bowron, F.J. Bermejo. Carbon, 100, 546 (2016)
- A. Iakunkov, V. Skrypnychuk, A. Nordenstro, E.A. Shilayeva, M. Korobov, M. Prodana, M. Enachescu, S.H. Larssond, A. Talyzin. Phys. Chem. Chem. Phys., 21, 17901 (2019)
- G. Rimkute, M. Gudaitis, J. Barkauskas, A. Zarkov, G. Niaura, J. Gaidukevic. Crystals (Basel), 12, 421 (2022)
- T. Peng, B. Liu, X. Gao, L. Luo, H. Sun. Appl. Surf. Sci., 444, 800 (2018). https://doi.org/10.1016/j.apsusc.2018.03.089
- I.M. Afanasov, O.N. Shornikova, D.A. Kirilenko, I.I. Vlasov, L. Zhang, J. Verbeeck, V.V. Avdeev, G. Van Tendeloo. Carbon NY., 48, 1862 (2010)
- N.E. Sorokina, N.V. Maksimova, V.V. Avdeev. Inorg. Mater., 37, 360 (2001)
- A.V. Ivanov, N.V. Maksimova, M.S. Manylov, A.N. Kirichenko, I.L. Kalachev, A.P. Malakho, V.V. Avdeev. J. Mater. Sci., 56, 4197 (2021)
- M.I. Saidaminov, N.V. Maksimova, P.V. Zatonskih, A.D. Komarov, M.A. Lutfullin, N.E. Sorokina, V.V. Avdeev. Carbon NY., 59, 337 (2013)
- A.V. Kaplin, E.A. Eremina, M.V. Korobov. Nanosystems, 15, 130 (2024)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.