Hierarchy of self-organization and self-assembly processes exemplified by the growth of films at the hydrocarbon--graphene nanofluid" interface
Yu. V. Pakharukov1,2, F. K. Shabiev1,2, R. F. Safargaliev22,3, E. V. Galunin11
1University of Tyumen, Tyumen, Russia
2Tyumen Industrial University, Tyumen, Russia
3Ural State University of Railway Transport branch in Tyumen, Tyumen, Russia
Email: ruslan.safargaliev@mail.ru
A comprehensive study of the interaction of graphene nanoparticles and hydrocarbons is performed in order to examine the mechanisms affecting the formation of ordered nanocrystalline structures at the interface of n-octane and graphene-containing nanofluids. An experimental setup of a proprietary design and a method for growing a film from hydrocarbon molecules and graphene nanowafers are presented. X-ray diffraction analysis and molecular mechanical modeling methods are used to determine the structure of the crystalline film. It is demonstrated that the film growth mechanism is associated with the processes of self-organization and self-assembly of graphene nanoparticles at the nanofluid-hydrocarbon interface. It is found that the hierarchy of self-organization and self-assembly processes determines the final structure of the film. It is demonstrated that the self-organization and self-assembly processes may be controlled by adjusting the initial temperature of the system and the concentration of graphene particles in the nanofluid. Keywords: graphene, graphene-based nanofluids, nanostructured film, self-organization, self-assembly.
- I. Prigogine. Introduction to Thermodynamics of Irreversible Processes (Interscience Publishers, NY., 1961)
- M. Eigen. Naturwissenschaften, 58, 465 (1971). DOI: 10.1007/BF00623322
- I. Prigogine, G. Nicolis. Bifurcation Analysis (Springer, Dordrecht, 1985), DOI: 10.1007/978-94-009-6239-2_1
- E.S. Kurkina, S.P. Kurdyumov. DAN, 395 (6), 743 (2004)
- Q. Li, Y.T. Zhu, I.A. Kinloch, A.H. Windle. J. Phys. Chem. B, 110 (28), 13926 (2006)
- L.A. Bityutskaya, D.A. Zhukalin, A.V. Tuchin, A.A. Frolov, V.A. Buslov. Condens. Matter. Interphases, 16 (4), 425 (2014)
- P.V. Lebedev-Stepanov, R.M. Kadushnikov, S.P. Molchanov, A.A. Ivanov, V.P. Mitrokhin, K.O. Vlasov, M.V. Alfimov. Nanotechnologies in Russia, 8, 137 (2013)
- K. Ariga. Langmuir, 36 (26), 7158 (2020)
- R.K. Ulaganathan, Y.H. Chang, D.Y. Wang, S.S. Li. Bull. Chem. Society Jpn., 91 (5), 761 (2018)
- M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran. J. Mater. Sci.: Mater. Electron., 29, 1719 (2018)
- T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, K. Ariga. Angewandte Chemie Intern. Edition, 57 (31), 9679 (2018)
- L.K. Shrestha, Q. Ji, T. Mori, K.I. Miyazawa, Y. Yamauchi, J.P. Hill, K. Ariga. Chemistry--An Asian J., 8 (8), 1662 (2013)
- K. Miyazawa. Sci. Technol. Adv. Mater, 16 A, 013502 (2015)
- P. Bairi, G.S. Kumar, S. Acharya, S. Maji, K. Ariga, L.K. Shrestha. J. Nanosci. Nanotechnol., 20 (5), 2971 (2020)
- V. Krishnan, Y. Kasuya, Q. Ji, M. Sathish, L.K. Shrestha, S. Ishihara, K. Minami, H. Morita, T. Yamazaki, N. Hanagata, K. Miyazawa, S. Acharya, W. Nakanishi, J.P. Hill, K. Ariga. ACS Appl. Mater. Interfaces, 7, 15667 (2015)
- B. Chu, F. Zheng, C. Fang, R. Wang, W. Cheng, J. Tao, T. Deng. Intern. J. Heat and Mass Transfer, 197, 123384 (2022)
- G. Choi, M. Yun, W.T. Hsu, D.I. Shim, D. Lee, B.S. Kim, H.H. Cho. Intern. J. Heat Mass Transfer, 197, 123329 (2022)
- Y.V. Pakharukov, F.K. Shabiev, V.V. Mavrinskii, R.F. Safargaliev, V.V. Voronin. JETP Lett., 109 (9), 615 (2019). DOI: 10.1134/S002136401909011X
- Y.V. Pakharukov, F.K. Shabiev, R.F. Safargaliev, A.V. Shabieva. J. Appl. Mechan. Tech. Phys., 63 (6), 1005 (2022)
- Y.V. Paharukov, F.K. Shabiev, R.F. Safargaliev, B.S. Ezdin, A.E. Zarvin, V.V. Kalyada. J. Phys.: Conf. Ser., 1677 (1), 012145 (2020)
- S.A. Votyakov, N.A. Samorodov, Y.V. Pakharukov, F.K. Shabiev, R.F. Safargaliev. J. Phys.: Conf. Ser., 1410 (1), 012227 (2019)
- Y.V. Pakharukov, F.K. Shabiev, R.F. Safargaliev, S.S. Volkova. Colloid and Interface Sci. Commun., 42, 100431 (2021)
- N.P. Dymchenko, L.M. Shishlyannikova, N.N. Yaroslavtseva. Appar. Metody Rentgenovskogo Anal., XV, 37 (1974) (in Russian).
- J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys.: Condens. Matter., 14, 2745 (2002)
- E. Artacho, E. Anglada, O. Dieguez, J.D. Gale, A. Garcia, J. Junquera, R.M. Martin, P. Ordejon, J.M. Pruneda, D. S'anchez-Portal, J.M. Soler. J. Phys.: Condens. Matter., 20, 064208 (2008)
- A.I. Kitaigorodsky. Molecular Crystals and Molecules (Academic Press, NY., 2012)
- V.P. Skripov, A.V. Skripov. Sov. Phys. Usp., 22, 389 (1979)
- P.K. Khabibullaev, M.Sh. Butabaev, Yu.V. Pakharukov, A.A. Saidov. Dokl. Ross. Akad. Nauk, 6 (324), 1183 (1992) (in Russian)
- I.P. Suzdalev. Nanotekhnologiya. Fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (KomKniga, M., 2006) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.