Effect of pH of the medium on fluorescence spectra of carbon dots based on Nile red dye
Nelson D.K.1, A. N. Starukhin1, Eurov D.A.1, Kurdyukov D. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: d.nelson@mail.ioffe.ru

PDF
The influence of alkaline medium and ultraviolet irradiation on the fluorescence of solutions of carbon dots based on the laser dye Nile red has been studied. It was found that the increase in pH of the medium leads to the quenching of the red emission band dominant in the fluorescence spectrum of carbon dots and to the enhancement of the green band, and the same fluorescence behavior is characteristic of Nile red solutions. It is shown that the quenching of red fluorescence of carbon dots and Nile red is accompanied by a significant weakening of the corresponding bands in the absorption spectra of the fluorophores studied. A similar effect was observed in the fluorescence of solutions of carbon dots and Nile red with neutral pH ~7 as a result of their irradiation with ultraviolet light in the spectral range of 248-400 nm. The influence of alkaline environment and ultraviolet irradiation on the optical characteristics of fluorophores is attributed to the chemical and photochemical reactions initiated by these external factors in the systems studied. The possible nature of the emissive centers involved in the reactions is discussed. Keywords: Carbon dots, absorption spectra, luminescence spectra, pH effect, UV treatment.
  1. Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.Y. Xie. J. Am. Chem. Soc., 128 (24), 7756 (2006). DOI: 10.1021/ja062677d
  2. A. Tiwari, L. Uzun (ed.) Advanced molecularly imprinting materials (Hoboken: John Wiley \& Sons, Inc., 2016)
  3. A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas, E.P. Gia. Chem. Mater., 20 (14), 4539 (2008). DOI: 10.1021/cm800506r
  4. M.A. Jhonsi, S. Thulasi. Chem. Phys. Lett., 661, 179 (2016). DOI: 10.1016/j.cplett.2016.08.081
  5. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang. Chem. Commun., 34, 5118 (2009). DOI: 10.1039/B907612C
  6. Y. Wang, A. Hu. J. Mater. Chem. C, 2 (34), 6921 (2014). DOI: 10.1039/C4TC00988F
  7. L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin. Adv. Mater., 27 (47), 7782 (2015). DOI: 10.1002/adma.201503821
  8. X. Wang, L. Cao, S.-T. Yang, F. Lu, M.J. Meziani, L. Tian, K.W. Sun, M.A. Bloodgood, Y.-P. Sun. Angew. Chem. Int. Ed., 49 (31), 5310 (2010). DOI: 10.1002/anie.201000982
  9. H. Peng, J. Travas-Sejdic. Chem. Mater., 21 (23), 5563 (2009). DOI: 10.1021/cm901593y
  10. C. Liu, F. Zhang, J. Hu, W. Gao, M. Zhang. Front. Chem., 8, 605028 (2021). DOI: 10.3389/fchem.2020.605028
  11. R. Jelinek. Carbon quantum dots (Springer Intern. Publishing, Switzerland, 2017)
  12. S.-T. Yang, X. Wang, H. Wang, F. Lu, P.G. Luo, L. Cao, M.J. Meziani, J.-H. Liu, Y. Liu, M. Chen, Y. Huang, Y.-P. Sun. J. Phys. Chem. C, 113 (42), 18110 (2009). DOI: 10.1021/jp9085969
  13. F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, S. Yang. Nano Today, 11 (5), 565 (2016). DOI: 10.1016/j.nantod.2016.08.006
  14. J. Joseph, A.A. Anappara. Chem. Phys. Chem., 18 (3), 292 (2017). DOI: 10.1002/cphc.201601020
  15. V. Naik, P. Zantye, D. Gunjal, A. Gore, P. Anbhule, M. Kowshik, G. Kolekar. ACS Appl. Bio Mater., 2 (5), 2069 (2019). DOI: 10.1021/acsabm.9b00101
  16. B. Kong, A. Zhu, C. Ding, X. Zhao, B. Li, Y. Tian. Adv. Mater., 24 (43), 5844 (2012). DOI: 10.1002/adma.201202599
  17. Z.L. Wu, M.X. Gao, T.T. Wang, X.Y. Wan, L.L. Zheng, C.Z. Huang. Nanoscale, 6 (7), 3868 (2014). DOI: 10.1039/C3NR06353D
  18. A. Barati, M. Shamsipur, H. Abdollahi. Anal. Chim. Acta, 931, 25 (2016). DOI: 10.1016/j.aca.2016.05.011
  19. Y. Sun, X. Wang, C. Wang, D. Tong, Q. Wu, K. Jiang, Y. Jiang, C. Wang, M. Yang. Microchim. Acta, 185, 83 (2018). DOI: 10.1007/s00604-017-2544-1
  20. W. Kong, H. Wu, Z. Ye, R. Li, T. Xu, B. Zhang. J. Lumin., 148, 238 (2014). DOI: 10.1016/j.jlumin.2013.12.007
  21. F. Yuan, L. Ding, Y. Li, X. Li, L. Fan, S. Zhou, D. Fang, S. Yang. Nanoscale, 7 (27), 11727 (2015). DOI: 10.1039/C5NR02007G
  22. M.K. Barman, A. Patra. J. Photochem. Photobiol. C: Photochem. Rev., 37, 1 (2018). DOI: 10.1016/j.jphotochemrev.2018.08.001
  23. Z. Sun, X. Li, Y. Wu, C. Wei, H. Zeng. New J. Chem., 42 (6), 4603 (2018). DOI: 10.1039/C7NJ04562J
  24. D. Chen, W. Wu, Y. Yuan, Y. Zhou, Z. Wan, P. Huang. J. Mater. Chem. C, 4 (38), 9027 (2016). DOI: 10.1039/C6TC02853E
  25. E.Y. Trofimova, D.A. Kurdyukov, S.A. Yakovlev, D.A. Kirilenko, Y.A. Kukushkina, A.V. Nashchekin, A.A. Sitnikova, M.A. Yagovkina, V.G. Golubev. Nanotechnology, 24 (15), 155601 (2013). DOI: 10.1088/0957-4484/24/15/155601
  26. D.A. Kurdyukov, D.A. Eurov, E.Y. Stovpiaga, D.A. Kirilenko, S.V. Konyakhin, A.V. Shvidchenko, V.G. Golubev. Phys. Solid State, 58 (12), 2545 (2016). DOI: 10.1134/S1063783416120167
  27. A.N. Starukhin, D.K. Nelson, D.A. Eurov, D.A. Kurdyukov, S.A. Grudinkin. Dyes Pigm., 216, 111342 (2023). DOI: 10.1016/j.dyepig.2023.111342
  28. J.R. Lakowicz. Principles of fluorescence spectroscopy (Springer Science+Business Media, 2006)
  29. A. Dager, T. Uchida, T. Maekawa, M. Tachibana. Sci. Rep., 9, 14004 (2019). DOI: 10.1038/s41598-019-50397-5
  30. C.J. Reckmeier, Y. Wang, R. Zboril, A.L. Rogach. J. Phys. Chem. C, 120 (19), 10591 (2016). DOI: 10.1021/acs.jpcc.5b12294
  31. Z. Yang, M. Xu, Y. Liu, F. He, F. Gao, Y. Su, H. Wei, Y. Zhang. Nanoscale, 6 (3), 1890 (2014). DOI: 10.1039/C3NR05380F
  32. M. Liu. Nanoarchitectonics, 1 (1), 1 (2020). DOI: 10.37256/nat.112020124.1-12
  33. N.I. Selivanov, L.G. Samsonova, V.Ya. Artyukhov, T.N. Kopylova. Izvestiya vuzov. Fizika, 54 (5), 85 (2011) (in Russian)
  34. V.A. Feoktistova, R.I. Baychurin, T.A. Novikova, A.Yu. Plekhanov, M.V. Puzyk. Opt. i spektr., 131 (2), 264 (2023) (in Russian). DOI: 10.21883/OS.2023.02.55018.4480-22
  35. M. Yang, B. Li, K. Zhong, Y. Lu. J. Mater. Sci., 53, 2424 (2018)
  36. Q. Mei, B. Liu, G. Han, R. Liu, M.-Y. Han, Zh. Zhang Adv. Sci., 6, 1900855 (2019). DOI: 10.1002/advs.201900855
  37. X. Fan, W. Peng, Y. Li, X. Li, Sh. Wang, G. Zhang, F. Zhang. Adv. Mater., 20, 4490 (2008)
  38. Z. Lixia, D. Fan, W. Dabin, G. Liang-Hong, Y. Yu, W. Bin, Z. Hongxiang. Nanoscale, 5, 2655 (2013)
  39. W.R. Gallegos-Perez, A.C. Reynosa-Marti nez, C. Soto-Ortiz, M.A. Alvarez-Lemus, J. Barroso-Flores, V.G. Montalvo, E. Lopez-Honorato. Chemosphere, 249, 126160 (2020).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru