Flexible Electrically Conductive Films Based on Biocompatible Composite Material
Ichkitidze L. P. 1,2, Popovich K. D. 1,2, Suchkova V. V. 1,2, Ryabkin D. I. 1,2, Hosseini S. S.3, Petukhov V. A. 1, Telyshev D. V. 1,2, Selischev S. V. 1, Gerasimenko A. Yu. 1,2
1Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russia
2Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
3Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
Email: leo852@inbox.ru, kristal_p@mail.ru, molodykh1999@gmail.com, ryabkindi@gmail.com, sara.hosseini.1447@gmail.com, vov4ick@mail.ru, telyshev@bms.zone, selishchev@bms.zone, gerasimenko@bms.zone

PDF
Biocompatible composite materials based on carbon nanotubes contained in the matrix exhibit strain-resistive properties under deformation. The possibility of their use as a prototype of a tactile sensor was investigated. The layers in the matrix of microcrystalline cellulose and the filler of multi-walled carbon nanotubes served as a tactile sensitive element. Aqueous suspension of the composite material was applied on a substrate (thickness 30 μm) made of polyethylene with subsequent exposure of the sample to laser radiation. It is shown that the tactile sensitive element based on thin layers of composite (thickness ≤ 1 μm) exhibits the properties of a bipolar strain sensor, and thick layers (thickness ≥ 10 μm) exhibit the properties of a unipolar strain sensor. It is found that tensoresistive measurements allow to fix the pressure ~ 0.2-20 Pa, which corresponds to the order of tactile sensitivity of human fingers. The prospect of using the obtained results in flexible electronics or for creation of T-sensors and electronic skin (e-skin) is considered. The work was carried out within the framework of the state assignment of the Russian Ministry of Education and Science (Project FSMR-2024-0003). Keywords: tactile sensitive element, strain sensor, microcrystalline cellulose, multi-walled carbon nanotubes, composite material.
  1. A. Salim, S. Lim. Sensors, 17, 2593 (2017). DOI: 10.3390/s17112593
  2. S. Chun, I. Hwang, W. Son, J.H. Chang, W. Park. Nanoscale, 10, 10545 (2018). DOI: 10.1039/C8NR00595H
  3. A. Chortos, L. Jia, Z. Bao. Nat. Mater., 15 (9), 937 (2016). DOI: 10.1038/nmat4671
  4. N. Hu, H. Fukunaga, S. Atobe, Y. Liu, J. Li. Sensors, 11 (11), 10691 (2011). DOI: 10.3390/s111110691
  5. Y. Miao, L. Chen, R. Sammynaiken, Y. Lin, W.J. Zhang. Rev. Sci. Instrum., 82 (12), 126104 (2011). DOI: 10.1063/1.3665959
  6. A.M. Kamalov, V.V. Kodolova-Chukhontseva, E.N. Dresvyanina, T.P. Maslennikova, I.P. Dobrovolskaya, E.M. Ivankova, E.N. Popova, V.E. Smirnova, V.E. Yudin. ZhTF, 92 (3), 435 (2022) (in Russian). DOI: 10.21883/JTF.2022.03.52138.278-21
  7. M. Chu, H.E. Naguib. Smart Mater. Struct., 30 (6), 065003 (2021). DOI: 10.1088/1361-665X/abefb6
  8. L.P. Ichkitidze, A.Y. Gerasimenko, V.M. Podgaetsky, S.V. Selishchev. Mater. Phys. Mech., 37, 153 (2018)
  9. G.A. Timerbulatova, P.D. Dunaev, L.M. Fatkhudinova. Meditsina truda i promyshlennaya ekologiya, 59 (9), 770 (2019) (in Russian). https://doi.org/10.31089/1026-9428-2019-59-9-770-771
  10. S. Jung, H.W. Choi, F.C. Mocanu, D.W. Shin, M.F. Chowdhury, S.D. Han, J.M. Kim. Sci. Rep., 9 (1), 1 (2019). DOI: 10.1038/s41598-018-37219-w
  11. L.P. Ichkitidze, V.A. Petukhov, A.Yu. Gerasimenko, V.M. Podgaetsky, S.V. Selischev. Patent N 2662060 C1
  12. M. Chu, H.E. Naguib. Smart Mater. Struct., 30 (6), 065003 (2021). DOI: 10.1088/1361-665X/abefb6
  13. A. Markov, R. Wordenweber, L. Ichkitidze, A. Gerasimenko, U. Kurilova, I. Suetina, M. Mezentseva, A. Offenhausser, D. Telyshev. Nanomaterials, 10, 2492 (2020). DOI: 10.3390/nano10122492
  14. L. Ichkitidze, A. Gerasimenko, D. Telyshev, V. Petukhov, E. Kitsyuk, V. Podgaetsky, S. Selishchev. In: Proceed. Intern. Conf. on "Physics and Mechanics of New Materials and Their Applications" PHENMA 2018. Springer Nature Switzerland AG ed. by I.A. Parinov (Springer Proceed. in Physics, 2019), p. 523-535. DOI: 10.1007/978-3-030-19894-7_40
  15. A. Salim, S. Lim. Sensors, 17, 2593 (2017). DOI: 10.3390/s17112593
  16. A.V. Litvinov. Norma v meditsinskoy praktike: sprav. posobie, pod red. A.V. Litvinova (MEDpress-inform, M., 2016), s. 144 (in Russian)
  17. Electronic source. Available at: URL: https://zavkom.com/otrasli/drugie-otrasli/ (date of access: 14.07.2024)
  18. Electronic source. Available at: URL: https://shop.evalar.ru/catalog/ (date of access: 14.07.2024)
  19. J. Chrzanowska, J. Hoffman, A. Ma olepszy, M. Mazurkiewicz, T.A. Kowalewski, Z. Szymanski, L. Stobinski. Phys. Status Solidi, 252 (8), 1860 (2015). DOI: 10.1002/pssb.201451614
  20. A.Y. Gerasimenko, O.E. Glukhova, M.S. Savelyev. JPCS, 1134, 012016 (2018). DOI: 10.1088/1742-6596/1134/1/012016
  21. Y. Yanping, C. Jimin. Laser Phys. Lett., 13 (6), Art.066001 (2016). DOI:10.1088/1612-201/13/6/066001
  22. C. Kocabas, M.A. Meitl, A. Gaur, M. Shim, J.A. Rogers. Nano Lett., 4 (12), 2421 (2004). DOI: 10.1021/nl048487n
  23. L.P. Ichkitidze, O.E. Glukhova, G.V. Savostyanov, A.Yu. Gerasimenko, V.M. Podgaetsky, S.V. Selishchev. Proceed. of SPIE--The Intern. Society for Optical Eng., 10685, 106853Q (2018). DOI: 10.1117/12.2306812
  24. L.P. Ichkitidze, A.Yu. Gerasimenko, V.M. Podgaetsky, S.V. Selishchev, A.A. Dudin, A.A. Pavlov. Mater. Phys. Mech., 37 (2), 140 (2018)
  25. I.A. Tarasenko, G.A. Piyavchenko, E.V. Mityaeva. Zhurnal nauchnykh statey "Zdorovie i obrazovanie v XXI veke" (Seriya meditsina) 14 (2), 57 (2012) (in Russian)
  26. Electronic source. Available at: URL: https://plastinfo.ru/information/articles/42/ (date of access: 14.07.2024)
  27. J. Park, B. Seo, Y. Jeong, I. Park. Adv. Sci. (Weinh), 11 (20), e2307427 (2024). DOI: 10.1002/advs.202307427
  28. S.S. Hosseini, B. Yamini, L. Ichkitidze, M. Asadi, J. Fernandez, S. Gholampour. Nanomater., 13, 473 (2023). DOI: 10.3390/nano13030473
  29. D. Friemert, C. Terschuren, B. Grob, R. Herold, N. Leuthner, C. Braun, U. Hartmann, V. Harth. In: Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Communication, Organization and Work: 11th International Conference, DHM 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, DenmarkProceedings, Part II 22 (2020). DOI: 10.1007/978-3-030-49907-5_25
  30. S. Shian, R.M. Diebold, A. McNamara, D.R. Clarke. Appl. Phys. Lett., 101, 061101 (2012). DOI: 10.1063/1.4742889
  31. K.-S. Sohn, J. Chung, M.-Y. Cho, S. Timilsina, W.B. Park, M. Pyo, N. Shin, K. Sohn, J.S. Kim. Sci. Rep., 7, 11061 (2017). DOI: 10.1038/s41598-017-11663-6
  32. P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu. Nano-Micro Lett., 11 (1), 71 (2019). DOI: 10.1007/s40820-019-0302-0
  33. G. Wu, X. Li, R. Bao, C. Pan. Adv. Funct. Mater., 36 (21), 2313857 (2024). DOI: 10.1002/adma.202313857
  34. C. Chen, F.Q. Xu, Y. Wu, X.L. Li, J.L. Xu, B. Zhao, Z. He, J. Yang, W. Zhang, J.W. Liu. Adv. Mater., 36, 25 (2024). DOI: 10.1002/adma.202400020
  35. D.V. Gusev, N.L. Danilova, R.S. Litvinenko, Yu.A. Mikhailov, V.V. Pankov, V.S. Sukhanov. Izvestiya VUZ, Elektronika, 20 (5), 511 (2015) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru