Investigation of the influence of microalgae on the sensory properties of carbon materials
Shavelkina M.B.1, Antonova I.V.2,3, Nebogatikova N.A.2, Ivanov A.I.2, Kiseleva S.V.1,4, Chernova N.I.1,4, Shatalova T.B.4
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
2Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Novosibirsk State Technical University, Novosibirsk, Russia
4Lomonosov Moscow State University, Moscow, Russia
Email: mshavelkina@gmail.com, antonova@isp.nsc.ru, nadonebo@gmail.com, art.iv.il@mail.ru, k_sophia_v@mail.ru, chernova_nadegda@mail.ru, shatalova@inorg.chem.msu.ru
Blue-green microalgae/cyanobacterium Arthrospira platensis is a renewable resource, a source of food and feed protein and other valuable compounds (carbohydrates, lipids, vitamins), and can also serve as a material for studying human health monitoring technologies. A suspension was made from microalgae biomass and applied to a solid (SiO2/Si dielectric plate) or flexible substrate (polyethylene terephthalate, PET) using 2D printing technologies. It was found that cyanobacterial films formed at atmospheric pressure react to exhaled air by significantly increasing their conductivity. A layer based on multigraphene and carbon fibers with a cyanobacterial film was formed and tested as a sensor structure. The texture and conductivity of the resulting structures were studied. High sensitivity of their electrical conductivity to human respiration, as well as to mechanical effects such as pressure on the sensor, was shown. It was found that the obtained conductive layer on the carbon fiber surface retains its conductivity under tensile deformations created by bending up to a radius of ~ 2 mm. The mechanism of interaction of synthetic carbon materials with a natural component was discussed. Keywords: microalgae biomass, graphene, carbon fibers, sensor, breath analysis.
- M.M. Allaf, H. Peerhossaini. Microorganisms, 10 (4), 696 (2022)
- E.I. Andreyuk, Zh.P. Kopteva, V.V. Zanina. Tsianobakterii (Naukova dumka, Kiev,1990) (in Russian)
- E.M. Pankratova, R.Yu. Zyablykh, A.A. Kalinin, A.L. Kovina, L.V. Trefilova. Algologiya, 14 (4), 445 (2004) (in Russian)
- A.A. Tsygankov. Prikladnaya biokhimiya i mikrobiologiya, 43 (3), 279 (2007) (in Russian)
- B.V. Gromov. Soros Educational J., 9, 33 (1996)
- E.B. Goldin. Ecosystems, 1, 14 (2015)
- T.N. Schemelinina, E.N. Patova, D.V. Tarabukin, E.M. Anchugova, D.P. Ocheretenko, V.V. Volodin. Ekologiya i promyshlennost Rossii, 19 (7), 44 (2015) (in Russian)
- K. Bloch, S. Ghosh. In: Integrated environmental technologies for wastewater treatment and sustainable development (Elsevier, 2022). p. 533-548
- S.A. Kedik, E.I. Yartsev, I.V. Sakaeva, E.S. Zhavoronok, A.V. Panov. Biofarmatsevticheskij zhurnal, 3 (3), 3 (2011) (in Russian)
- M.I. Mendzhul, E.V. Andrienko, T.G. Lysenko, A.M. Zaychenko, I.V. Busakhina, O.A. Shainskaya. Uspekhi meditsinskoy mikologii, 1 (1) (in Russian), 155 (2003)
- E.K. Zolotareva, E.I. Shnyukova, V.V. Podorvanov. Algologiya (in Russian), 20 (2), 224 (2010)
- N.I. Chernova, S.V. Kiseleva, O.M. Larina, G.A. Sychev. Alternativnaya energetika i ekologiya (ISJAEE). 31-36, 23 (2018) (in Russian). DOI: 10.15518/isjaee.2018.31-36.023-034
- M. Danouche, N. El Ghachtouli, H. El Arroussi. Heliyon, 7 (7), e07609 (2021). DOI: 10.1016/j.heliyon.2021.e07609
- H. Demey, T. Vincent, E. Guibal. Chem. Eng. J., 332, 582 (2018). DOI: 10.1016/j.cej.2017.09.083
- S.S. Mirsasaani, M. Hemati, E.S. Dehkord, G.T. Yazdi, D.A. Poshtiri, K. Subramani, W. Ahmed. Nanobiomaterials in Clinical Dentistry. Chapter 2 - Nanotechnology and nanobiomaterials in dentistry (Elsevier, 2019). p. 19-37. DOI: 10.1016/B978-0-12-815886-9.00002-4
- M. Lengke, M.E. Fleet, G. Southam. Langmuir, 22, 2780 (2006). DOI: 10.1021/la052652c
- M. Lengke, B. Ravel, M.E. Fleet, G. Wanger, R.A. Gordon, G. Southam. Environ. Sci. Technol., 40, 6304 (2006). DOI: 10.1021/es061040r
- M.V. Lengke, M.E. Fleet, G. Southam. Langmuir, 23, 2694 (2007). DOI: 10.1021/la0613124
- M.V. Lengke, M.E. Fleet, G. Southam. Langmuir, 23, 8982 (2007). DOI: 10.1021/la7012446
- A.O. Govorov, I. Carmeli. Nano Lett., 7, 620 (2007). DOI: 10.1021/nl062528t
- D. Hashoul, H. Haick. Europ. Respiratory Rev., 28, 152 (2019). DOI: 10.1183/16000617.0011-2019
- R. Gasparri, M. Santonico, C. Valentini, G. Sedda, A. Borri, F. Petrella, P. Maisonneuve, G. Pennazza, A. D'Amico, C. Di Natale. J. Breath. Res., 10 (1), 016007 ( 2016). DOI: 10.1088/1752-7155/10/1/016007
- H.C. Bidsorkhi, N. Faramarzi, B. Ali, L.R. Ballam, A.G. D'Aloia, A. Tamburrano, M.S. Sarto. Mater. Design, 230, 111970 (2023). DOI: 10.1016/j.matdes.2023.111970
- L. Brochard, G.S. Martin, L. Blanch, P. Pelosi, F.J. Belda, A. Jubran, L. Gattinoni, J. Mancebo, V.M. Ranieri, J.-Ch.M. Richard, D. Gommers, A. Vieillard-Baron, A. Pesenti, S. Jaber, O. Stenqvist, J.-L. Vincent. Crit. Care, 16, 219 (2012). DOI: 10.1186/cc11146
- M. Folke, I.L. Cernerud, M. Ekstrom, I.B. Hok. Med. Biol. Eng. Comput., 41, 377 (2003). DOI: 10.1007/BF02348078
- D. Hashoul, H. Haick. Europ. Respiratory Rev., 28, 152 (2019). DOI: 10.1183/16000617.0011-2019
- V.R. Nidheesh, K.M. Aswini, B.K. Vasudevan, C. Santhosh. ACS Sensors, 8 (11), 4111 (2023). DOI: 10.1021/acssensors.3c01316
- B. De Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, D. Osborne, N.M. Ratcliffe. J. Breath. Res., 8 (1), 014001 (2014). DOI: 10.1088/1752-7155/8/1/014001
- A.T. Guntner, S. Abegg, K. Konigstein, P.A. Gerber, A. Schmidt-Trucksass, S.E. Pratsinis. ACS Sensors, 4 (2), 268 (2019). DOI: 10.1021/acssensors.8b00937
- H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, L. Sun. Frontiers Chem., 7, 399 (2019). DOI: 10.3389/fchem.2019.00399
- S. Ammu. Sci. Lett., 4, 162 (2015).
- J.B.C. Davies. Carbon Fibre Sensors. In: A. Casals (ed.). Sensor Devices and Systems for Robotics. NATO ASI Series (Springer, Berlin, Heidelberg, 1989). v. 52. DOI: 10.1007/978-3-642-74567-6_4
- A.I. Sidorina, A.M. Safonov. Nauchno-tekhnicheskiy zhurnal "TRUDY VIAM", 7, 63 (2022) (in Russian)
- M.B. Shavelkina, P.P. Ivanov, A.N. Bocharov, R.Kh. Amirov. Plasma Chem. Plasma Process., 41 (3), 171 (2021). DOI: 10.1007/s11090-020-10133-8
- D.V. Smovzh, I.A. Kostogrud, E.V. Boyko, P.E. Matochkin, I.A. Bezrukov, A.S. Krivenko. Prikladnaya mekhanika i tekhnicheskaya fizika, 61 (5), 235 (2020) (in Russian). DOI: 10.15372/PMTF20200524
- M.B. Shavelkina, P.P. Ivanov, A.N. Bocharov, R.Kh. Amirov. Materials, 13 (7), 1728 (2020). DOI: 10.3390/ma13071728
- O. Zietz, S. Olson, B. Coyne, Y. Liu, J. Jiao. Nanomaterials, 10, 2235 (2020). DOI: 10.3390/nano10112235
- V.A. Lysenko. Gazodiffuzionnye podlozhki toplivnykh elementov. Promyshlenny vypusk. Dizayn. materialy. tekhnologiya, 4 (7), 122 (2008) (in Russian)
- S.V. Arzamastsev, O.V. Astashkina, V.V. Martsenyuk. Bumagi na osnove uglerodnykh i grafitirovannykh volokon. Nekotorye teoreticheskie polozheniya. Mater. XXII Mezhdunar. nauchno-prakticheskoy konf. "Nauka v sovremennom informatsionnom obschestve" 24-25 marta 2020 g. NITs Akademichesky (North Charleston, Izd-vo: Lulu Press, Inc., 2020) (in Russian)
- A. Horoschenkoff, C. Christner. Composites and Their Applications. (InTech., 2012). DOI: 10.5772/50504
- F.V. Ferreira, L. De Simone Cividanes, F.S. Brito, B. Rossi Canuto de Menezes, W. Franceschi, E.A.N. Simonetti, G. Patroci nio. Thim Functionalizing Graphene and Carbon Nanotubes. (A Review Springer Cham, 2016). DOI: 10.1007/978-3-319-35110-0
- V. Georgakilas, J.N. Tiwari, K.Ch. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril. Chem. Rev., 116 (9), 5464 (2016).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.