Investigation of the processes of formation of the crystalline phase in rapid-quenched layered amorphous-crystalline ribbons produced of Ti50Ni25Cu25 alloy during electric pulse treatment
Sitnikov N. N. 1,2, Greshnyakova S.V. 1, Zaletova I. A.1, Shelyakov A. V. 2
1Joint Stock Company Keldysh State Research Center (JSC Keldysh Research Center), Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: sitnikov_nikolay@mail.ru, nanocentre@kerc.msk.ru, irina-zaletova@mail.ru, alex-shel@mail.ru

PDF
The effect of electric pulse treatment (EPT) on the microstructure of rapid-quenched layered amorphous-crystalline ribbons obtained by spinning a Ti50Ni25Cu25 melt on a rapid rotating copper disk has been experimentally investigated. A sequential series of samples of Ti50Ni25Cu25 alloy ribbons was obtained after EPT with a single pulse of electric current with a duration of 1 ms with an increase in the degree of heating after reaching the recrystallization temperature of the amorphous part of the ribbons at an electric current density (J) from 680 to 891 A/mm2. Studies of the microstructure of the cross-section of the treated samples and the calorimetric effects during the course of martensitic transformations (MT) have shown that the magnitude and nature of MT are consistent with the observed microstructure of ribbons after EPT with varying degrees of annealing. An increase in J during EPT and overheating leads to the formation of a more homogeneous crystal structure, characterized mainly by columnar crystals, and an increase in MT temperature. The peak temperature of the austenitic transformation in the treated samples, depending on the increase in J, increases from 39.0 oC in the initial state to 64.5 oC at J=891 A/mm2. Keywords: electric pulse treatment, amorphous state, crystalline state, TiNiCu, phase transition.
  1. A.M. Glezer, Phys. Usp., 55 (5), 522 (2012). DOI: 10.3367/UFNe.0182.201205h.0559
  2. R.V. Sundeev, A.V. Shalimova, N.N. Sitnikov, O.P. Chernogorova, A.M. Glezer, M.Yu. Presnyakov, I.A. Karateev, E.A. Pechina, A.V. Shelyakov, J. Alloys Compd., 845, 156273 (2020). DOI: 10.1016/j.jallcom.2020.156273
  3. S. Wang, X. Chi, J.-B. Sun, H.-W. Ding, W. Yang, Mater. Lett., 361, 136124 (2024). DOI: 10.1016/j.matlet.2024.136124
  4. A. Shelyakov, N. Sitnikov, K. Borodako, V. Koledov, I. Khabibullina, S. von Gratowski, J. Micro-Bio Robot., 16 (1), 43 (2020). DOI: 10.1007/s12213-020-00126-3
  5. I. Stachiv, E. Alarcon, M. Lamac, Metals, 11 (3), 415 (2021). DOI: 10.3390/met11030415
  6. S.V. von Gratowski, M.I. Zhukovskaya, A.M. Lunichkin, A.V. Shelyakov, N.N. Sitnikov, V.V. Koledov, K.A. Borodako, S.F. Petrenko, Tech. Phys., 68 (8), 1135 (2023). DOI: 10.61011/TP.2023.08.57277.37-23
  7. A. El Boubekri, M. Ounacer, M. Sajieddine, M. Sahlaoui, H. Lassri, A. Essoumhi, E.K. Hlil, A. Razouk, E. Agouriane, Physica B, 663, 414997 (2023). DOI: 10.1016/j.physb.2023.414997
  8. J. Jiang, Y. Wu, H. Chen, Z. Wan, D. Ding, L. Xia, X. Guo, P. Yu, J. Colloid Interface Sci., 633, 303 (2023). DOI: 10.1016/j.jcis.2022.11.081
  9. A. Shelyakov, N. Sitnikov, I. Khabibullina, N. Tabachkova, V. Fominski, N. Andreev, Mater. Lett., 248, 48 (2019). DOI: 10.1016/j.matlet.2019.03.140
  10. N.N. Sitnikov, I.A. Zaletova, A.V. Shelyakov, A.A. Ashmarin, Met. Sci. Heat Treat., 63 (5-6), 251 (2021). DOI: 10.1007/s11041-021-00679-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru