Molecular dynamics study of the effect of grain size of nanocrystalline titanium on the intensity of its dissolution in aluminum
Poletaev G. M.
1, Sitnikov A. A.
1, Filimonov V. Y.
1,2, Yakovlev V. I.
11Polzunov Altai State Technical University, Barnaul, Russia
2Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
Email: gmpoletaev@mail.ru, sitalan@mail.ru, vyfilimonov@rambler.ru, yak1961@yandex.ru
Using molecular dynamics simulation, the effect of the grain size of nanocrystalline titanium on the intensity of its dissolution in aluminum was studied. It was shown that in the case of grains of the order of several nanometers in size in titanium, due to the high density of grain boundaries, the intensity of mutual diffusion at the interphase boundary is significantly higher than in the case of single-crystal titanium. The high density of grain boundaries in titanium may thus be one of the reasons, along with the energy stored as a result of deformation in defects, for the decrease in the activation energy of the synthesis reaction in the Ti-Al system after mechanical treatment of the initial mixture. Keywords: molecular dynamics, titanium, nanocrystalline structure, grain size, grain boundary.
- Y.W. Kim. J. Miner. Met. Mater. Soc. 46, 30 (1994). https://doi.org/10.1007/BF03220745
- F. Appel, P.A. Beaven, R. Wagner. Acta Metall. Mater. 41, 1721 (1993). https://doi.org/10.1016/0956-7151(93)90191-T
- J. Lapin. In: Proceedings of the Metal. Tanger, Ostrava, Czech Republic (2009). V. 19, No. 21.5. P. 2019
- T. Tetsui. Rare Metals 30, 294 (2011). https://doi.org/10.1007/s12598-011-0288-3
- T. Voisin, J.-P. Monchoux, A. Couret. In: P. Cavaliere (Ed.), Spark Plasma Sintering of Materials. Springer, Cham (2019). P. 713. https://doi.org/10.1007/978-3-030-05327-7_25
- M.A. Morris, M. Leboeuf. Mater. Sci. Eng. A 224, 1 (1997). https://doi.org/10.1016/S0921-5093(96)10532-3
- R. Bohn, T. Klassen, R. Bormann. Intermetallics 9, 7, 559 (2001). https://doi.org/10.1016/S0966-9795(01)00039-5
- M. Kambara, K. Uenishi, K.F. Kobayashi. J. Mater. Res. 35, 2897 (2000). https://doi.org/10.1023/A:1004771808047
- H. Kimura. Phil. Mag. A 73, 3, 723 (1996). https://doi.org/10.1080/01418619608242993
- J.S. Benjamin. Sci. Am. 234, 40 (1976). http://dx.doi.org/10.1038/scientificamerican0576-40
- V.V. Neverov, V.N. Burov, P.P. Zhitnikov. Izv. SO AN SSSR. Ser. khim. nauk 5, 12, 54 (1983). (in Russian)
- H. Bakker, G.F. Zhou, H. Yang. Prog. Mater Sci. 39, 3, 159 (1995). https://doi.org/10.1016/0079-6425(95)00001-1
- V.V. Boldyrev, K. Tkacova. J. Mater. Synth. Process. 8, 121 (2000). https://doi.org/10.1023/A:1011347706721
- A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, R. Chassagnon, N.V. Sachkova, O.D. Boyarchenko. Int. J. Self-Propag. High-Temp. Synth. 22, 210 (2013). https://doi.org/10.3103/S1061386213040067
- A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, D.Yu. Kovalev, S. Rouvimov, A.A. Nepapushev, A.S. Mukasyan. J. Alloys Compd. 577, 600 (2013). http://dx.doi.org/10.1016/j.jallcom.2013.06.114
- C.E. Shuck, A.S. Mukasyan. J. Phys. Chem. A 121, 1175 (2017). https://doi.org/10.1021/acs.jpca.6b12314
- A.S. Rogachev. Russ. Chem. Rev. 88, 875 (2019). https://doi.org/10.1070/RCR4884
- A.A. Nepapushev, D.O. Moskovskikh, V.S. Buinevich, S.G. Vadchenko, A.S. Rogachev. Metall. Mater. Trans. B 50, 1241 (2019). https://doi.org/10.1007/s11663-019-01553-9
- V.Y. Filimonov, M.V. Loginova, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.V. Sobachkin, A.Z. Negodyaev, A.Y. Myasnikov. Combust. Sci. Technol. 192, 3, 457 (2020). https://doi.org/10.1080/00102202.2019.1571053
- Q. Nguyen, C. Huang, M. Schoenitz, K.T. Sullivan, E.L. Dreizin. Powder Technol. 327, 368 (2018). https://doi.org/10.1016/j.powtec.2017.12.082
- A. Fourmont, O. Politano, S. Le Gallet, C. Desgranges, F. Baras. J. Appl. Phys. 129, 065301 (2021). https://doi.org/10.1063/5.0037397
- F. Baras, Q. Bizot, A. Fourmont, S. Le Gallet, O. Politano. Appl. Phys. A 127, 555 (2021). https://doi.org/10.1007/s00339-021-04700-9
- G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov, A.A. Sitnikov, V.I. Yakovlev. Mater. Phys. Mech. 51, 5, 9 (2023). http://dx.doi.org/10.18149/MPM.5152023_2
- G.M. Poletaev, Yu.V. Bebikhov, A.S. Semenov, A.A. Sitnikov. J. Exp. Theor. Phys. 136, 4, 477 (2023). https://doi.org/10.1134/S1063776123040118
- U. Hoffmann, C. Horst, E. Kunz. In: K. Sundmacher, A. Kienle, A. Seidel-Morgenstern (Eds.), Integrated Chemical Processes. Wiley-VCH, Weinheim (2005). P. 407. https://doi.org/10.1002/3527605738.ch14
- B.B. Khina. Int. J. Self-Propag. High-Temp Synth. 17, 211 (2008). https://doi.org/10.3103/S1061386208040018
- A.S. Mukasyan, B.B. Khina, R.V. Reeves. Chem. Eng. J. 174, 677 (2011). https://doi.org/10.1016/j.cej.2011.09.028
- G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov. Mater. Chem. Phys. 309, 128358 (2023). https://doi.org/10.1016/j.matchemphys.2023.128358
- G.M. Poletaev, Y.Y. Gafner, S.L. Gafner. Lett. Mater. 13, 4, 298 (2023). https://doi.org/10.22226/2410-3535-2023-4-298-303
- S.R. Phillpot, J.F. Lutsko, D. Wolf, S. Yip. Phys. Rev. B 40, 2831 (1989). https://doi.org/10.1103/PhysRevB.40.2831
- S. Xiao, W. Hu, J. Yang. J. Phys. Chem. B 109, 43, 20339 (2005). https://doi.org/10.1021/jp054551t
- S. Xiao, W. Hu, J. Yang. J. Chem. Phys. 125, 18, 184504 (2006). https://doi.org/10.1063/1.2371112
- T. Wejrzanowski, M. Lewandowska, K. Sikorski, K.J. Kurzydlowski. J. Appl. Phys. 116, 16, 164302 (2014). https://doi.org/10.1063/1.4899240
- Z. Noori, M. Panjepour, M. Ahmadian. J. Mater. Res. 30, 1648 (2015). https://doi.org/10.1557/jmr.2015.109
- G. Poletaev, R. Rakitin, Y. Bebikhov, A. Semenov. Phys. Scr. 100, 015988 (2025). https://doi.org/10.1088/1402-4896/ad9ef8
- C. Herzig, Y. Mishin. In: P. Heitjans, J. Karger (Eds.), Diffusion in Condensed Matter. Springer, Berlin (2005). https://doi.org/10.1007/3-540-30970-5_8
- C. Herzig, S.V. Divinski. Mater. Trans. 44, 1, 14 (2003). https://doi.org/10.2320/matertrans.44.14
- B. Bokstein, A. Rodin. Diffusion Foundations 1, 99 (2014). https://doi.org/10.4028/www.scientific.net/df.1.99
- A.I. Gusev. UFN. 168, 1, 55 (1998). https://doi.org/10.3367/UFNr.0168.199801c.0055
- X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev. Mater. Sci. Eng. A 540, 1 (2012). https://doi.org/10.1016/j.msea.2012.01.080
- R.R. Zope, Y. Mishin. Phys. Rev. B 68, 024102 (2003). https://doi.org/10.1103/PhysRevB.68.024102
- Y.-K. Kim, H.-K. Kim, W.-S. Jung, B.-J. Lee. Comput. Mater. Sci. 119, 1 (2016). https://doi.org/10.1016/j.commatsci.2016.03.038
- Q.-X. Pei, M.H. Jhon, S.S. Quek, Z. Wu. Comput. Mater. Sci. 188, 110239 (2021). https://doi.org/10.1016/j.commatsci.2020.110239
- G.M. Poletaev, Yu.V. Bebikhov, A.S. Semenov, M.D. Starostenkov. Lett. Mater. 11, 4, 438 (2021). https://doi.org/10.22226/2410-3535-2021-4-438-441
- H. Tsuzuki, P.S. Branicio, J.P. Rino. Comput. Phys. Commun. 177, 518 (2007). https://doi.org/10.1016/j.cpc.2007.05.018
- E.V. Levchenko, A.V. Evteev, T. Lorscheider, I.V. Belova, G.E. Murch. Comput. Mater. Sci. 79, 316 (2013). https://doi.org/10.1016/j.commatsci.2013.06.006
- M.J. Cherukara, T.P. Weihs, A. Strachan. Acta Mater. 96, 1 (2015). https://doi.org/10.1016/j.actamat.2015.06.008
- Y. Mishin, D. Farkas, M.J. Mehl, D. A. Papaconstantopoulos. Phys. Rev. B 59, 5, 3393 (1999). https://doi.org/10.1103/physrevb.59.3393
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.