Physics of the Solid State
Volumes and Issues
Molecular dynamics study of the effect of grain size of nanocrystalline titanium on the intensity of its dissolution in aluminum
Poletaev G. M. 1, Sitnikov A. A. 1, Filimonov V. Y. 1,2, Yakovlev V. I. 1
1Polzunov Altai State Technical University, Barnaul, Russia
2Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
Email: gmpoletaev@mail.ru, sitalan@mail.ru, vyfilimonov@rambler.ru, yak1961@yandex.ru

PDF
Using molecular dynamics simulation, the effect of the grain size of nanocrystalline titanium on the intensity of its dissolution in aluminum was studied. It was shown that in the case of grains of the order of several nanometers in size in titanium, due to the high density of grain boundaries, the intensity of mutual diffusion at the interphase boundary is significantly higher than in the case of single-crystal titanium. The high density of grain boundaries in titanium may thus be one of the reasons, along with the energy stored as a result of deformation in defects, for the decrease in the activation energy of the synthesis reaction in the Ti-Al system after mechanical treatment of the initial mixture. Keywords: molecular dynamics, titanium, nanocrystalline structure, grain size, grain boundary.
  1. Y.W. Kim. J. Miner. Met. Mater. Soc. 46, 30 (1994). https://doi.org/10.1007/BF03220745
  2. F. Appel, P.A. Beaven, R. Wagner. Acta Metall. Mater. 41, 1721 (1993). https://doi.org/10.1016/0956-7151(93)90191-T
  3. J. Lapin. In: Proceedings of the Metal. Tanger, Ostrava, Czech Republic (2009). V. 19, No. 21.5. P. 2019
  4. T. Tetsui. Rare Metals 30, 294 (2011). https://doi.org/10.1007/s12598-011-0288-3
  5. T. Voisin, J.-P. Monchoux, A. Couret. In: P. Cavaliere (Ed.), Spark Plasma Sintering of Materials. Springer, Cham (2019). P. 713. https://doi.org/10.1007/978-3-030-05327-7_25
  6. M.A. Morris, M. Leboeuf. Mater. Sci. Eng. A 224, 1 (1997). https://doi.org/10.1016/S0921-5093(96)10532-3
  7. R. Bohn, T. Klassen, R. Bormann. Intermetallics 9, 7, 559 (2001). https://doi.org/10.1016/S0966-9795(01)00039-5
  8. M. Kambara, K. Uenishi, K.F. Kobayashi. J. Mater. Res. 35, 2897 (2000). https://doi.org/10.1023/A:1004771808047
  9. H. Kimura. Phil. Mag. A 73, 3, 723 (1996). https://doi.org/10.1080/01418619608242993
  10. J.S. Benjamin. Sci. Am. 234, 40 (1976). http://dx.doi.org/10.1038/scientificamerican0576-40
  11. V.V. Neverov, V.N. Burov, P.P. Zhitnikov. Izv. SO AN SSSR. Ser. khim. nauk 5, 12, 54 (1983). (in Russian)
  12. H. Bakker, G.F. Zhou, H. Yang. Prog. Mater Sci. 39, 3, 159 (1995). https://doi.org/10.1016/0079-6425(95)00001-1
  13. V.V. Boldyrev, K. Tkacova. J. Mater. Synth. Process. 8, 121 (2000). https://doi.org/10.1023/A:1011347706721
  14. A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, R. Chassagnon, N.V. Sachkova, O.D. Boyarchenko. Int. J. Self-Propag. High-Temp. Synth. 22, 210 (2013). https://doi.org/10.3103/S1061386213040067
  15. A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, D.Yu. Kovalev, S. Rouvimov, A.A. Nepapushev, A.S. Mukasyan. J. Alloys Compd. 577, 600 (2013). http://dx.doi.org/10.1016/j.jallcom.2013.06.114
  16. C.E. Shuck, A.S. Mukasyan. J. Phys. Chem. A 121, 1175 (2017). https://doi.org/10.1021/acs.jpca.6b12314
  17. A.S. Rogachev. Russ. Chem. Rev. 88, 875 (2019). https://doi.org/10.1070/RCR4884
  18. A.A. Nepapushev, D.O. Moskovskikh, V.S. Buinevich, S.G. Vadchenko, A.S. Rogachev. Metall. Mater. Trans. B 50, 1241 (2019). https://doi.org/10.1007/s11663-019-01553-9
  19. V.Y. Filimonov, M.V. Loginova, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.V. Sobachkin, A.Z. Negodyaev, A.Y. Myasnikov. Combust. Sci. Technol. 192, 3, 457 (2020). https://doi.org/10.1080/00102202.2019.1571053
  20. Q. Nguyen, C. Huang, M. Schoenitz, K.T. Sullivan, E.L. Dreizin. Powder Technol. 327, 368 (2018). https://doi.org/10.1016/j.powtec.2017.12.082
  21. A. Fourmont, O. Politano, S. Le Gallet, C. Desgranges, F. Baras. J. Appl. Phys. 129, 065301 (2021). https://doi.org/10.1063/5.0037397
  22. F. Baras, Q. Bizot, A. Fourmont, S. Le Gallet, O. Politano. Appl. Phys. A 127, 555 (2021). https://doi.org/10.1007/s00339-021-04700-9
  23. G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov, A.A. Sitnikov, V.I. Yakovlev. Mater. Phys. Mech. 51, 5, 9 (2023). http://dx.doi.org/10.18149/MPM.5152023_2
  24. G.M. Poletaev, Yu.V. Bebikhov, A.S. Semenov, A.A. Sitnikov. J. Exp. Theor. Phys. 136, 4, 477 (2023). https://doi.org/10.1134/S1063776123040118
  25. U. Hoffmann, C. Horst, E. Kunz. In: K. Sundmacher, A. Kienle, A. Seidel-Morgenstern (Eds.), Integrated Chemical Processes. Wiley-VCH, Weinheim (2005). P. 407. https://doi.org/10.1002/3527605738.ch14
  26. B.B. Khina. Int. J. Self-Propag. High-Temp Synth. 17, 211 (2008). https://doi.org/10.3103/S1061386208040018
  27. A.S. Mukasyan, B.B. Khina, R.V. Reeves. Chem. Eng. J. 174, 677 (2011). https://doi.org/10.1016/j.cej.2011.09.028
  28. G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov. Mater. Chem. Phys. 309, 128358 (2023). https://doi.org/10.1016/j.matchemphys.2023.128358
  29. G.M. Poletaev, Y.Y. Gafner, S.L. Gafner. Lett. Mater. 13, 4, 298 (2023). https://doi.org/10.22226/2410-3535-2023-4-298-303
  30. S.R. Phillpot, J.F. Lutsko, D. Wolf, S. Yip. Phys. Rev. B 40, 2831 (1989). https://doi.org/10.1103/PhysRevB.40.2831
  31. S. Xiao, W. Hu, J. Yang. J. Phys. Chem. B 109, 43, 20339 (2005). https://doi.org/10.1021/jp054551t
  32. S. Xiao, W. Hu, J. Yang. J. Chem. Phys. 125, 18, 184504 (2006). https://doi.org/10.1063/1.2371112
  33. T. Wejrzanowski, M. Lewandowska, K. Sikorski, K.J. Kurzydlowski. J. Appl. Phys. 116, 16, 164302 (2014). https://doi.org/10.1063/1.4899240
  34. Z. Noori, M. Panjepour, M. Ahmadian. J. Mater. Res. 30, 1648 (2015). https://doi.org/10.1557/jmr.2015.109
  35. G. Poletaev, R. Rakitin, Y. Bebikhov, A. Semenov. Phys. Scr. 100, 015988 (2025). https://doi.org/10.1088/1402-4896/ad9ef8
  36. C. Herzig, Y. Mishin. In: P. Heitjans, J. Karger (Eds.), Diffusion in Condensed Matter. Springer, Berlin (2005). https://doi.org/10.1007/3-540-30970-5_8
  37. C. Herzig, S.V. Divinski. Mater. Trans. 44, 1, 14 (2003). https://doi.org/10.2320/matertrans.44.14
  38. B. Bokstein, A. Rodin. Diffusion Foundations 1, 99 (2014). https://doi.org/10.4028/www.scientific.net/df.1.99
  39. A.I. Gusev. UFN. 168, 1, 55 (1998). https://doi.org/10.3367/UFNr.0168.199801c.0055
  40. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev. Mater. Sci. Eng. A 540, 1 (2012). https://doi.org/10.1016/j.msea.2012.01.080
  41. R.R. Zope, Y. Mishin. Phys. Rev. B 68, 024102 (2003). https://doi.org/10.1103/PhysRevB.68.024102
  42. Y.-K. Kim, H.-K. Kim, W.-S. Jung, B.-J. Lee. Comput. Mater. Sci. 119, 1 (2016). https://doi.org/10.1016/j.commatsci.2016.03.038
  43. Q.-X. Pei, M.H. Jhon, S.S. Quek, Z. Wu. Comput. Mater. Sci. 188, 110239 (2021). https://doi.org/10.1016/j.commatsci.2020.110239
  44. G.M. Poletaev, Yu.V. Bebikhov, A.S. Semenov, M.D. Starostenkov. Lett. Mater. 11, 4, 438 (2021). https://doi.org/10.22226/2410-3535-2021-4-438-441
  45. H. Tsuzuki, P.S. Branicio, J.P. Rino. Comput. Phys. Commun. 177, 518 (2007). https://doi.org/10.1016/j.cpc.2007.05.018
  46. E.V. Levchenko, A.V. Evteev, T. Lorscheider, I.V. Belova, G.E. Murch. Comput. Mater. Sci. 79, 316 (2013). https://doi.org/10.1016/j.commatsci.2013.06.006
  47. M.J. Cherukara, T.P. Weihs, A. Strachan. Acta Mater. 96, 1 (2015). https://doi.org/10.1016/j.actamat.2015.06.008
  48. Y. Mishin, D. Farkas, M.J. Mehl, D. A. Papaconstantopoulos. Phys. Rev. B 59, 5, 3393 (1999). https://doi.org/10.1103/physrevb.59.3393

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru