Physics of the Solid State
Volumes and Issues
Thermodynamic parameters of crystallization during heating of metallic amorphous metal-metalloid alloys
Spivak L. V. 1, Shchepina N. E. 1, Lunegov I.V. 1
1Perm State University, Perm, Russia
Email: lspivak2@mail.ru, neshchepina@mail.ru, lunegov@psu.ru

PDF
For the first time, high-resolution differential scanning calorimetry provides information on the enthalpy and entropy of crystallization stages during heating of amorphous metal alloys (AMA) metal-metalloid based on iron and cobalt Fe77Ni1Si9B13 and Fe5Co58Ni10Si11B16. The thermodynamic characteristics of AMA during crystallization and of the basic elements Fe and Co during their crystallization from the melt have been analyzed. In all cases without exception, the enthalpy and entropy values of AMA crystallization are markedly smaller than those of base elements crystallization from the melt. The activation energies of phase transformation during heating of AMA at the first and second stages of their realization have been determined. A marked effect of heating rate (5-40 K/min) on the enthalpy and entropy of crystallization of the Co-based metal-metalloid alloy was found. It is shown that maturation of an iron-based alloy at room temperature for 10 years leads to a noticeable decrease in the exothermic effect of its crystallization while preserving the two-stage character of such transformation. Keywords: calorimetry, enthalpy, entropy, activation energy, amorphous state.
  1. K. Suzuki, H. Fujimori, K. Hashimoto. Materials Science of Amorphous Metals / Ed. T. Masumoto. Ohmsha, Tokyo (1982). 281 p
  2. D.V. Louzguine-Luzgin. Mater. 17, 14, 3573 (2024). https://doi.org/10.3390/ma17143573
  3. I.C. Rho, C.S. Yoon, C.K. Kim, T.Y. Byun, K.S. Hong. J. Non-Cryst. Solids 316, 2-3, 289 (2003)
  4. S.D. Kaloshkin, I.A. Tomilin. Thermochimica Acta 280/281, 303 (1996). https://doi.org/10.1016/0040-6031(96)02926-7
  5. D.V. Louzguine-Luzgin, J. Jiang. Metals 9, 10, 1076 (2019). https://doi.org/10.3390/met9101076
  6. B.A. Rusanov, V.E. Sidorov, P. Svec, P. Svec Sr, D. Janickovic, S.A. Petrova. Inorg. Mater. 56, 1, 14 (2020)
  7. G.G. Goransky, B.B. Hina, V.I. Zhornik, A.I. Pobol. Vestnik of Vitebsk Technological University 27, 126 (2014). (in Russian)
  8. C. Parra-Velasquez, D. Perea-Cabarcas, F.J. Bolivar. Revista Facultad de Ingenieria Universidad de Antioquia 95, 44 (2020)
  9. H. Dhurandhar, A.T. Patel, T.L.S. Rao, K.N. Lad, A. Pratap. J. ASTM Int. 7, 10, 1 (2010). https://doi.org/10.1520/JAI102577
  10. S.M. Sarge, G.W.H. Hohne, W.F. Hemminger. Calorimetry. Fundamentals Instrumentation and Applications. Wiley-VCH Verlag GmbH \& Co. KGaA: Weinheim, Germany (2014). 280 p
  11. H.E. Kissinger. Analytical Chem. 29, 11, 1702 (1957). https://doi.org/10.1021/ac60131a045
  12. I. Guyzov, S. Toschev. In: Advances in Nucleation and Crystallization in Glasses / Eds L.L. Hench, S.W. Freiman. Am. Ceram. Soc., Inc. (1971). P. 10--23
  13. V.M. Ievlev, S.V. Kannykin, T.N. Il'inova, M.S. Volodina, E.V. Bobrinskaya, A.S. Baikin, V.V. Vavilova, D.V. Serikov. Inorg. Mater. 52, 7, 677 (2016)
  14. R.A. Nazipov, A.V. Mitin, N.A. Zyuzin. Uchenye zapiski Kazanskogo gosudarsvennogo universiteta. Ser. Fiz.-Mat. Nauki 147, kn. 2, 80 (2005). (in Russian)
  15. K. Hono, D.H. Ping. Mater. Characterization 44, 1-2, 203 (2000)
  16. E. Jakubczyk, L. Krajczyk, P. Siemion, M. Jakubczyk. Optica Applicata XXXVII, 4, 359 (2007)
  17. G. Abrosimova, A. Aronin, D. Matveev, E. Pershina. Mater. Lett. 97, 15 (2013)
  18. E.N. Zanaeva, A.I. Bazlov, E.V. Ubyivovk, D.A. Milkova. Phys. Metals. Metallogr. 124, 6, 537 (2023)
  19. Yu.N. Goichenberg, V.E. Roshchin, S.I. Il'in. Vestnik YuUrGU. Ser. Metallurgiya 16, 3, 134 (2016). (in Russian)
  20. K. Yang, B. Li, X.-H. Fan, X. Wang. J. Therm. Anal. Calorimetry 148, 3, 689 (2023). https://doi.org/10.1007/s10973-022-11778-7
  21. S. Sharma, C. Suryanarayana. J. Apl. Phys. 102, 8, 083544 (2007). https://doi.org/10.1063/1.2800840
  22. W.F. Gale, T.C. Totemeier. "Smithhells Metal Reference", 8th Edition, Butterworth-Heinemann, Waltham, (2004), 2080 p
  23. A.M. Gleser, I.E. Permyakova. Materialovedenie, 6, 30 (2006). (in Russian)
  24. P.J. Van Ekeren. In: Handbook of Thermal Analysis and Calorimetry; v. l. / Ed. M.E. Brown. Elsevier Science B.V. (1998). P. 75--84
  25. Introduction to Thermal Analysis / Ed. M.E. Brown. Kliwer Academic Publishers, New York, Boston, Dordricht, London, Moscow (2001). 264 p
  26. V.A. Aleshkevich. Molekulyarnaya fizika. Fizmatlit, M. (2016). p. 307. (in Russian)
  27. J. Piatkowski, V. Przeliorz, V. Szymszal. Archives. Foundry Eng. 17, 2, 207 (2017)
  28. J. vSestak. Thermophysical Properties of Solids. Measurments. Their Theoretical Thermal Analysis. Academia Prague (1984). 456 p
  29. A.K. Galwey, M.E. Brown. Handbook of Thermal Analysis and Calorimetry, v. 1 / Ed. M.E. Brown. Elsevier Science B.V. (1998). 147 p
  30. I.M. Lifshitz, V.V. Slezov. JETP 8, 2, 331 (1959)
  31. P. Haasen. Physikalische Metallkude. Springer Verlag, Berlin (1984). 342 p
  32. S.V. Terekhov. Phys. Metals. Metallogr. 121, 7, 664 (2020)
  33. S. Lesz, R. Nowosielski, B. Kostrubiec, Z. Stoklosa. J. Achievements. Mater. Manufacfurinq Eng. 16, 1-2, 35 (2006)
  34. V.S. Kraposhin, V.S. Khmelevskaya, M.Y. Yazvitsky, I.A. Antoshina. J. Non-Cryst. Solids 353, 32-40, 3057 (2007)
  35. L.V. Spivak, N.E. Shchepina. Phys. Solid State 61, 8, 1347 (2019).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru