Physics of the Solid State
Volumes and Issues
Magnetic susceptibility of hybrid SiC/Si structures synthesized by coordinated atomic substitution method
Kukushkin S. A. 1, Rul' N. I. 1,2,3, 1,4, 1, Romanov V. V. 2, Bagraev N. T. 1,3
1Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
3Ioffe Institute, St. Petersburg, Russia
4St. Petersburg State University, St. Petersburg, Russia
Email: sergey.a.kukushkin@gmail.com, rul_ni@spbstu.ru, romanov@phmf.spbstu.ru, bagraev@mail.ioffe.ru

PDF
The static magnetic susceptibility of SiC/Si hybrid structures grown by the method of coordinated substitution of atoms (MCSA method) at different synthesis times has been measured. The static susceptibility of the samples under study was carried out by using the Faraday method on the Faraday Balance setup based on the MGD 312 FG spectrometer. The results showed that all SiC/Si structures, regardless of the time of their synthesis, are diamagnets (chi<0), and the absolute of their magnetic susceptibility, measured at room temperature, is more than three orders of magnitude higher than the absolute values of the magnetic susceptibility of both silicon and silicon carbide. As a result of the structural studies of both the SiC layer it was found that the main contribution to the diamagnetism of the hybrid structure is made by the transition layer at the SiC/Si interface. It was found that this layer consists of twin ordered layers located parallel to the interface boundary in the (111) plane with a period of 0.252 nm with a triple periodicity, i. e. with an interval of 0.756 nm. Quantum mechanical calculations have shown that these twinned ordered layers contain ordered ensembles of silicon vacancies located along the <110> direction. Keywords: magnetic susceptibility, diamagnetism, silicon carbide on silicon, silicon vacancies, terahertz radiation, nanostructures.
  1. S.A. Kukushkin, A.V. Osipov, E.V. Osipova, V.M. Stozharov. PSS 64, 3, 327 (2022). DOI: 10.21883/PSS.2022.03.53187.232
  2. I.A. Eremeev, M.G. Vorobev, A.S. Grashchenko, A.V. Semencha, A.V. Osipov, S.A. Kukushkin. PSS 65, 1, 68 (2023). DOI: 10.21883/PSS.2023.01.54976.480
  3. S.A. Kukushkin1, M.G. Vorobev, A.V. Osipov, A.S. Grashchenko, E.V. Ubyivovk. PSS 66, 7, 1094 (2023). DOI: 10.61011/PSS.2024.07.58982.120
  4. S.A. Kukushkin, A.V. Osipov. Russian Journal of Gen. Chem. 92, 4, 547 (2022). DOI: 10.1134/S1070363222040028)
  5. S.A. Kukushkin, A.V. Osipov. Condensed Matter and Interphases 24, 4, 407 (2022). DOI: 10.17308/kcmf.2022.24/10549
  6. A. Severino, C. Locke, R. Anzalone, M. Camarda, N. Piluso, A. La Magna, S. Saddow, G. Abbondanza, G. D'Arrigo, F. La Via. ECS Trans 35, 6, 99 (2011). DOI: 10.1149/1.3570851
  7. G. Ferro. Crit. Rev. Solid State Mater. Sci. 40, 1, 56 (2015). DOI: 10.1080/10408436.2014.940440
  8. S. Nishino, J.A. Powell, H.A. Will. Appl. Phys. Lett. 42, 5, 460 (1983). DOI: 10.1063/1.93970
  9. N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, V.V. Romanov, L.E. Klyachkin, A.M. Malyarenko, V.S. Khromov. Semiconductors 55, 2, 37 (2021). DOI: 10.1134/S106378262102007X
  10. I.K. Kikoin. Tablitsy fizicheskikh velichin: Spravochnik. Publisher: Atomizdat. (1976) p. 1008. (in Russian)
  11. I.P. Kalinkin, S.A. Kukushkin, A.V. Osipov. Semiconductors 52, 802 (2018). DOI: 10.1134/S1063782618060118
  12. T.L. Makarova. FTP 38, 6, 641 (2004). (in Russian)
  13. S.A. Kukushkin, A.V. Osipov. Materials 14, 1, 78 (2021). https://doi.org/10.3390/ma14010078
  14. S.A. Kukushkin, A.V. Osipov. Pisma v ZhTF 46, 22, 3 (2020). (in Russian). https://doi.org/10.21883/PJTF.2020.22.50298.18439
  15. U. Kaiser, A. Chuvilin, P.D. Brown, W. Richter. Microsc. Microanal. 5, 420 (1999). DOI: 10.1017/S1431927699990487
  16. S.A. Kukushkin, A.V. Osipov. Pisma v ZhTF 50, 21, 19 (2024). (in Russian). DOI: 10.61011/PJTF.2024.21.58953.20027
  17. S.A. Kukushkin, A.V. Osipov, V.N. Bessolov, B.K. Medvedev, V.K. Nevolin, K.A. Tcarik. Rev. Adv. Mater. Sci. 17, 1/2, 1 (2008). https://www.ipme.ru/e-journals/RAMS/no_11708/ kukushkin.pdf
  18. N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, L.E. Klyachkin, A.M. Malyarenko, V.S. Khromov. FTP 55, 11, 1027 (2021). (in Russian). DOI: 10.21883/FTP.2021.11.51556.9709
  19. N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, L.E. Klyachkin, A.M. Malyarenko, V.S. Khromov. FTP 55, 12, 1195 (2021). (in Russian). DOI: 10.21883/FTP.2021.12.51705.9620
  20. R. Zhang, Q. Zhang, X. Jia, S. Wen, H. Wu, Y. Gong, Y. In, C. Lan, C. Li. Nanotechnology 34, 34, 345704 (2023). DOI: 10.1088/1361-6528/acd855

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru