Physics of the Solid State
Volumes and Issues
Electronic structure of the valence band of gallium nitride during sodium adsorption
Lapushkin M.N.1, Mizerov A. M.2, Timoshnev S. N.2
1Ioffe Institute, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: lapushkin@ms.ioffe.ru, andreymizerov@rambler.ru, timoshnev@mail.ru

PDF
The electronic structure of the Na/GaN interface was studied using synchrotron radiation photoelectron spectroscopy in the photon energy range of 75-770 eV. To determine the physical properties of the GaN surface upon Na adsorption, the density of states was calculated using the density functional theory. The 2D GaN layer was modeled by a GaN(0001) 2x2x2 supercell containing 10 GaN bilayers. It was shown that the adsorption of Na atoms in the hollow position and over the surface N atoms is preferable, and the adsorption energies of sodium atoms are -1.96 and -1.93 eV, respectively. It was found that Na adsorption leads to the formation of surface states whose electron density is localized near the Fermi level. Keywords: GaN, sodium, adsorption, photoelectron spectroscopy, density functional theory.
  1. M. Haziq, S. Falina, A. Abd Manaf, H. Kawarada, M. Syamsul. Micromachines 13, 12, 2133 (2022). DOI: 10.3390/mi13122133
  2. C.-C. Lin, Y.-R. Wu, H.-C. Kuo, M.S. Wong, S.P. DenBaars, S. Nakamura, A. Pandey, Z. Mi, P. Tian, K. Ohkawa, D. Iida, T. Wang, Y. Cai, J. Bai, Z. Yang, Y. Qian, S.-T. Wu, J. Han, C. Chen, Z. Liu, B.-R. Hyun, J.-H. Kim, B. Jang, H.-D. Kim, H.-J. Lee, Y.-T. Liu, Y.-H. Lai, Y.-L. Li, W. Meng, H. Shen, B. Liu, X. Wang, K.-l. Liang, C.-J. Luo, Y.-H. Fang. J. Phys. Photonics 5, 4, 042502 (2023). DOI: 10.1088/2515-7647/acf972
  3. G.V. Benemanskaya, S.A. Kukushkin, P.A. Dementev, M.N. Lapushkin, S.N. Timoshnev, D.V. Smirnov. Solid State Commun. 271, 6 (2018). DOI: 10.1016/j.ssc.2017.12.004
  4. G.V. Benemanskaya, M.N. Lapushkin, D.E. Marchenko, S.N. Timoshnev, Tech. Phys. Lett. 44, 3, 247 (2018). DOI: 10.1134/S106378501803015X
  5. S. Timoshnev, G. Benemanskaya, G. Iluridze, T. Minashvili. Surf. Interface Anal. 52, 10, 620 (2020). DOI: 10.1002/sia.6801
  6. S.N. Timoshnev, G.V. Benemanskaya, A.M. Mizerov, M.S. Sobolev, Y.B. Enns. Semiconductors, 57, 11, 508 (2023). DOI: 10.1134/S106378262308016X
  7. V.M. Bermudez. Surf. Sci. Rep. 72, 4, 147 (2017). DOI: 10.1016/j.surfrep.2017.05.001
  8. T.K. Zywietz, J. Neugebauer, M. Scheffler. Appl. Phys. Lett. 74, 12, 1695 (1999). DOI: 10.1063/1.123658
  9. M. Himmerlich, L. Lymperakis, R. Gutt, P. Lorenz, J. Neugebauer, S. Krischok. Phys. Rev. B 88, 12, 125304 (2013). DOI: 10.1103/PhysRevB.88.125304
  10. P. Kempisty, P. Strak, S. Krukowski. Surf. Sci. 605, 7-8, 695 (2011). DOI: 10.1016/j.susc.2011.01.005
  11. L. Liu, J. Tian, F. Lu. J. Energy Res. 45, 9340 (2021). DOI: 10.1002/er.6464
  12. K.H. Yeoh, T.L. Yoon, T.L. Lim, Rusi, D.S. Ong. Superlattices Microstruct. 130, 428 (2019). DOI: 10.1016/j.spmi.2019.05.011
  13. Z. Cui, E. Li, X. Ke, T. Zhao, Y. Yang, Y. Ding, T. Liu, Y. Qu, S. Xu. Appl. Surf. Sci. 423, 829 (2017). DOI: 10.1016/j.apsusc.2017.06.233
  14. Y. Zheng, E. Li, C. Liu, K. Bai, Z. Cui, D. Ma. J. Phys. Chem. Solids 152, 109857 (2021). DOI: 10.1016/j.jpcs.2020.109857
  15. P.V. Seredin, D.L. Goloshchapov, D.E. Kostomakha, Y.A. Peshkov, N.S. Buylov, S.A. Ivkov, A.M. Mizerov, S.N. Timoshnev, M.S. Sobolev, E.V. Ubyivovk, V.I. Zemlyakov. Opt. Mater. 152, 115471 (2024). DOI: 10.1016/j.optmat.2024.115471
  16. D.A. Shirley. Phys. Rev. B 5, 12, 4709 (1972). DOI: 10.1103/PhysRevB.5.4709
  17. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys.: Condens. Matter 21, 39, 395502 (2009). DOI: 10.1088/0953-8984/21/39/395502
  18. J.P. Perdew, A. Zunger. Phys. Rev. B 23, 10, 5048 (1981). DOI: 10.1103/PhysRevB.23.5048
  19. L. Liu, F. Lu, J. Tian. Appl. Phys. A 125, 840 (2019). DOI: 10.1007/s00339-019-3142-3
  20. F. Lu, L. Liu, S. Xia, Y. Diao, S. Feng. Superlattices Microstruct. 118, 160 (2018). DOI: 10.1016/j.spmi.2018.04.021
  21. H. Shinotsuka, S. Tanuma, C.J. Powell, D.R. Penn. Surf. Interface Anal. 51, 4, 427 (2019). DOI: 10.1002/sia.6598
  22. M. Krawczyk, L. Zommer, A. Jablonski, I. Grzegory, M. Bockowski. Surf. Sci. 566-568, Part 2, 1234 (2004). DOI: 10.1016/j.susc.2004.06.098
  23. L.L. Lev, I.O. Maiboroda, E.S. Grichuk, N.K. Chumakov, N.B.M. Schroter, M.-A. Husanu, T. Schmitt, G. Aeppli, M.L. Zanaveskin, V.G. Valeyev, V.N. Strocov. Phys. Rev. Research 4, 1, 013183 (2022). DOI: 10.1103/PhysRevResearch.4.013183

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru