Physics of the Solid State
Volumes and Issues
Microstructure, dielectric and ferroelectric characteristics of 0.1BiFeO3-0.9PbFe0.5Nb0.5O3 multiferroic ceramics at temperatures of 10-850 K
Pavlenko A. V. 1,2, Zhidel K. M. 1
1Scientific Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
2Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
Email: karinagidele@gmail.com

PDF
The microstructure, dielectric, ferroelectric and piezoelectric characteristics of the multiferroic ceramics 0.1BiFeO3-0.9PbFe0.5Nb0.5O3 have been studied. It is shown that ceramics are impurity-free and have a homogeneous grain structure. When analyzing the ε'(T,f) and ε''(T,f) dependences of the sample at T=(10-850) K, it was found that 0.1BiFeO3-0.9PbFe0.5Nb0.5O3 is a relaxor ferroelectric; a magnetodielectric effect appears during the magnetic phase transition, and at T>450 K, a significant contribution to the dielectric response begins to be made by the Maxwell-Wagner polarization and the corresponding dielectric relaxation. It was revealed that at room temperature, 0.1BiFeO3-0.9PbFe0.5Nb0.5O3 ceramics, unlike BiFeO3 and PbFe0.5Nb0.5O3, is characterized by high values of the real part of the complex permittivity, ε'~9000, dielectric controllability, K~40 % and a piezoelectric coefficient, d33~340 pm/V. Keywords: solid solutions, dielectric controllability, ferroelectric relaxor, Maxwell-Wagner polarization.
  1. N.A. Spaldin, R. Ramesh. Nat. Mater. 18, 3, 203 (2019)
  2. N. Spaldin. Proc. Math. Phys. Eng. Sci. 476, 2233, 20190542 (2020)
  3. Yu.N. Venevtsev, V.V. Gagulin, V.N. Lyubimov. Segnetomagnetiki. Nauka, M. (1982). p. 224. (in Russian)
  4. A.V. Pavlenko, A.T. Kozakov, S.P. Kubrin, A.A. Pavelko, K.A. Guglev, L.A. Shilkina, I.A. Verbenko, D.A. Sarichev, L.A. Reznichenko. Ceram. Int. 38, 8, 6157 (2012)
  5. A.V. Turik, A.V. Pavlenko, K.P. Andryushin, S.I. Shevtsova, L.A. Reznichenko, A.I. Chernobabov. Phys. Solid State 54, 5, 947 (2012)
  6. O. Raymond, R. Font, J. Portelles, J.M. Siqueiros. J. Appl. Phys. 109, 9, 094106 (2011)
  7. A.M. Kadomtseva, Y.F. Popov, A.P. Pyatakov, G.P. Vorob'ev, A.K. Zvezdin, D. Viehland. Phase Transit. 79, 12, 1019 (2006)
  8. N.N. Krainik, N.P. Khuchua, A.A. Berezhnoy, A.G. Tutov. FTT 7, 1, 132 (1965)
  9. L.A. Shilkina, A.V. Pavlenko, L.A. Reznichenko, I.A. Verbenko. Crystallogr. Reps 61, 2, 263 (2016)
  10. J.P. Patel, A. Singh, D. Pandey. J. Appl. Phys. 107, 10, 104115 (2010)
  11. D. Bochenek, P. Niemiec, P. Guzdek, M. Wzorek. Mater. Chem. Phys. 195, 199 (2017)
  12. A.S. Golofastova, N.M. Novikovsky, V.M. Raznomazov, A.V. Pavlenko, I.A. Verbeno, D.A. Sarychev, L.A. Reznichenko, A.V. Makhiboroda. UPF 4, 1, 32 (2016). (in Russian)
  13. E.G. Fesenko. Segnetoelectriki. Izd-vo Rostovskogo universiteta, Rostov-na-Donu (1968). p. 274. (in Russian)
  14. S. Dong, J.-M. Liu, S.-W. Cheong, Z. Ren. Adv. Phys. 64, 5-6, 519 (2015)
  15. V.V. Zhdanova. FTT 7, 1, 143 (1965)
  16. A.V. Pavlenko, L.A. Shilkina, L.A. Reznichenko. Crystallogr. Reps 57, 1, 118 (2012)
  17. V.P. Sakhnenko, N.V. Ter-Oganessian. Acta Crystallografica B. Struct. Sci. Cryst. Eng. Mater. 74, Part 3, 264 (2018)
  18. Y. Yang, S.T. Zhang, H.B. Huang, Y.F. Chen, Z.G. Liu, J.-M. Liu. Mater. Lett. 59, 14-15, 1767 (2005)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru