Pavlenko A. V.
1,2, Zhidel K. M.
11Scientific Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
2Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
Email: karinagidele@gmail.com
The microstructure, dielectric, ferroelectric and piezoelectric characteristics of the multiferroic ceramics 0.1BiFeO3-0.9PbFe0.5Nb0.5O3 have been studied. It is shown that ceramics are impurity-free and have a homogeneous grain structure. When analyzing the ε'(T,f) and ε''(T,f) dependences of the sample at T=(10-850) K, it was found that 0.1BiFeO3-0.9PbFe0.5Nb0.5O3 is a relaxor ferroelectric; a magnetodielectric effect appears during the magnetic phase transition, and at T>450 K, a significant contribution to the dielectric response begins to be made by the Maxwell-Wagner polarization and the corresponding dielectric relaxation. It was revealed that at room temperature, 0.1BiFeO3-0.9PbFe0.5Nb0.5O3 ceramics, unlike BiFeO3 and PbFe0.5Nb0.5O3, is characterized by high values of the real part of the complex permittivity, ε'~9000, dielectric controllability, K~40 % and a piezoelectric coefficient, d33~340 pm/V. Keywords: solid solutions, dielectric controllability, ferroelectric relaxor, Maxwell-Wagner polarization.
- N.A. Spaldin, R. Ramesh. Nat. Mater. 18, 3, 203 (2019)
- N. Spaldin. Proc. Math. Phys. Eng. Sci. 476, 2233, 20190542 (2020)
- Yu.N. Venevtsev, V.V. Gagulin, V.N. Lyubimov. Segnetomagnetiki. Nauka, M. (1982). p. 224. (in Russian)
- A.V. Pavlenko, A.T. Kozakov, S.P. Kubrin, A.A. Pavelko, K.A. Guglev, L.A. Shilkina, I.A. Verbenko, D.A. Sarichev, L.A. Reznichenko. Ceram. Int. 38, 8, 6157 (2012)
- A.V. Turik, A.V. Pavlenko, K.P. Andryushin, S.I. Shevtsova, L.A. Reznichenko, A.I. Chernobabov. Phys. Solid State 54, 5, 947 (2012)
- O. Raymond, R. Font, J. Portelles, J.M. Siqueiros. J. Appl. Phys. 109, 9, 094106 (2011)
- A.M. Kadomtseva, Y.F. Popov, A.P. Pyatakov, G.P. Vorob'ev, A.K. Zvezdin, D. Viehland. Phase Transit. 79, 12, 1019 (2006)
- N.N. Krainik, N.P. Khuchua, A.A. Berezhnoy, A.G. Tutov. FTT 7, 1, 132 (1965)
- L.A. Shilkina, A.V. Pavlenko, L.A. Reznichenko, I.A. Verbenko. Crystallogr. Reps 61, 2, 263 (2016)
- J.P. Patel, A. Singh, D. Pandey. J. Appl. Phys. 107, 10, 104115 (2010)
- D. Bochenek, P. Niemiec, P. Guzdek, M. Wzorek. Mater. Chem. Phys. 195, 199 (2017)
- A.S. Golofastova, N.M. Novikovsky, V.M. Raznomazov, A.V. Pavlenko, I.A. Verbeno, D.A. Sarychev, L.A. Reznichenko, A.V. Makhiboroda. UPF 4, 1, 32 (2016). (in Russian)
- E.G. Fesenko. Segnetoelectriki. Izd-vo Rostovskogo universiteta, Rostov-na-Donu (1968). p. 274. (in Russian)
- S. Dong, J.-M. Liu, S.-W. Cheong, Z. Ren. Adv. Phys. 64, 5-6, 519 (2015)
- V.V. Zhdanova. FTT 7, 1, 143 (1965)
- A.V. Pavlenko, L.A. Shilkina, L.A. Reznichenko. Crystallogr. Reps 57, 1, 118 (2012)
- V.P. Sakhnenko, N.V. Ter-Oganessian. Acta Crystallografica B. Struct. Sci. Cryst. Eng. Mater. 74, Part 3, 264 (2018)
- Y. Yang, S.T. Zhang, H.B. Huang, Y.F. Chen, Z.G. Liu, J.-M. Liu. Mater. Lett. 59, 14-15, 1767 (2005)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.