Equilibrium configuration of Janus particles in the case of compensated surface tension forces
Fedoseev V. B. 1
1Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: vbfedoseev@yandex.ru

PDF
Janus particles are often formed during phase transformations in small volumes. In simulating their states, restriction to simple configurations is typically used. In this study, mechanical equilibrium stemming from compensation of surface forces has been considered. Geometric characteristics of Janus particles have been shown to significantly depend on the volume fraction of coexisting phases. Equilibrium shapes of particles are given in this paper for different volume fractions of phases at a constant surface tension on the interphase boundaries. A conclusion has been made that, in modeling Janus particles with variable segregation degree, it is necessary to take into account changes in geometric parameters. Keywords: phase transformations, surface effects, mechanical equilibrium, Janus particles.
  1. P. Pankaj, S. Bhattacharyya, S. Chatterjee, Acta Mater., 233, 117933 (2022). DOI: 10.1016/j.actamat.2022.117933
  2. Q. Song, Y. Chao, Y. Zhang, H.C. Shum, J. Phys. Chem. B, 125, 562 (2021). DOI: 10.1021/acs.jpcb.0c09884
  3. M. Pavlovic, M. Antonietti, B.V.K.J. Schmidt, L. Zeininger, J. Coll. Interface Sci., 575, 88 (2020). DOI: 10.1016/j.jcis.2020.04.067
  4. Q. Zhang, M. Xu, X. Liu, W. Zhao, C. Zong, Y. Yu, Q. Wang, H. Gai, Chem. Commun., 52, 5015 (2016). DOI: 10.1039/c6cc00249h
  5. H. Peng, W. Qi, S. Li, W. Ji, J. Phys. Chem. C, 119, 2186 (2015). DOI: 10.1021/jp510725a
  6. V.M. Samsonov, N.Yu. Sdobnyakov, A.Yu. Kolosov, I.V. Talyzin, A.Yu. Kartoshkin, S.A. Vasilyev, V.S. Myasnichenko, D.N. Sokolov, K.G. Savina, A.D. Veselov, S.S. Bogdanov, Bull. Russ. Acad. Sci. Phys., 85 (9), 950 (2021). DOI: 10.3103/S1062873821090240
  7. A.S. Shirinyan, A.M. Gusak, P.J. Desre, P.J. Desre, J. Metastable Nanocryst. Mater., 7, 17 (2000). DOI: 10.4028/www.scientific.net/jmnm.7.17
  8. H.G. Kim, J. Lee, G. Makov, Materials, 14, 2929 (2021). DOI: 10.3390/ma14112929
  9. A.S. Shirinyan, G. Wilde, Y. Bilogorodskyy, J. Mater. Sci., 55, 12385 (2020). DOI: 10.1007/s10853-020-04812-2
  10. R. Ferrando, J. Phys.: Condens. Matter., 27, 013003 (2015). DOI: 1 0.1088/0953-8984/27/1/013003
  11. A.S. Shirinyan, M. Wautelet, Nanotechnology, 15, 1720 (2004). DOI: 10.1088/0957-4484/15/12/004
  12. L.D. Geoffrion, G. Guisbiers, J. Phys. Chem. C, 124, 14061 (2020). DOI: 10.1021/acs.jpcc.0c04356
  13. Y. Dahan, G. Makov, R.Z. Shneck, Calphad, 53, 136 (2016). DOI: 10.1016/j.calphad.2016.04.006
  14. W.J. Jasper, N. Anand, J. Mol. Liq., 281, 196 (2019). DOI: 10.1016/j.molliq.2019.02.039
  15. G. Kaptay, J. Mater. Sci., 47, 8320 (2012). DOI: 10.1007/s10853-012-6772-9
  16. V.B. Fedoseev, Phys. Solid State, 66 (11), 1908 (2024). DOI: 10.61011/PSS.2024.11.60103.252
  17. A.V. Shishulin, V.B. Fedoseev, Tech. Phys., 65, 340 (2020). DOI: 10.1134/S1063784220030238
  18. A.V. Shishulin, V.B. Fedoseev, Tech. Phys. Lett., 45, 697 (2019). DOI: 10.1134/S1063785019070289
  19. V.B. Fedoseev, A.V. Shishulin, Phys. Solid State, 60, 1398 (2018). DOI: 10.1134/S1063783418070120
  20. G. Guisbiers, S. Khanal, F. Ruiz-Zepeda, J.R. de la Puente, M. Jose-Yacaman, G. Guisbiers, S. Khanal, F. Ruiz-Zepeda, J. Roque De La Puente, M. Jose-Yacaman, Nanoscale, 6, 14630 (2014). DOI: 10.1039/c4nr05739b

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru