Equilibrium configuration of Janus particles in the case of compensated surface tension forces
Fedoseev V. B.
11Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: vbfedoseev@yandex.ru
Janus particles are often formed during phase transformations in small volumes. In simulating their states, restriction to simple configurations is typically used. In this study, mechanical equilibrium stemming from compensation of surface forces has been considered. Geometric characteristics of Janus particles have been shown to significantly depend on the volume fraction of coexisting phases. Equilibrium shapes of particles are given in this paper for different volume fractions of phases at a constant surface tension on the interphase boundaries. A conclusion has been made that, in modeling Janus particles with variable segregation degree, it is necessary to take into account changes in geometric parameters. Keywords: phase transformations, surface effects, mechanical equilibrium, Janus particles.
- P. Pankaj, S. Bhattacharyya, S. Chatterjee, Acta Mater., 233, 117933 (2022). DOI: 10.1016/j.actamat.2022.117933
- Q. Song, Y. Chao, Y. Zhang, H.C. Shum, J. Phys. Chem. B, 125, 562 (2021). DOI: 10.1021/acs.jpcb.0c09884
- M. Pavlovic, M. Antonietti, B.V.K.J. Schmidt, L. Zeininger, J. Coll. Interface Sci., 575, 88 (2020). DOI: 10.1016/j.jcis.2020.04.067
- Q. Zhang, M. Xu, X. Liu, W. Zhao, C. Zong, Y. Yu, Q. Wang, H. Gai, Chem. Commun., 52, 5015 (2016). DOI: 10.1039/c6cc00249h
- H. Peng, W. Qi, S. Li, W. Ji, J. Phys. Chem. C, 119, 2186 (2015). DOI: 10.1021/jp510725a
- V.M. Samsonov, N.Yu. Sdobnyakov, A.Yu. Kolosov, I.V. Talyzin, A.Yu. Kartoshkin, S.A. Vasilyev, V.S. Myasnichenko, D.N. Sokolov, K.G. Savina, A.D. Veselov, S.S. Bogdanov, Bull. Russ. Acad. Sci. Phys., 85 (9), 950 (2021). DOI: 10.3103/S1062873821090240
- A.S. Shirinyan, A.M. Gusak, P.J. Desre, P.J. Desre, J. Metastable Nanocryst. Mater., 7, 17 (2000). DOI: 10.4028/www.scientific.net/jmnm.7.17
- H.G. Kim, J. Lee, G. Makov, Materials, 14, 2929 (2021). DOI: 10.3390/ma14112929
- A.S. Shirinyan, G. Wilde, Y. Bilogorodskyy, J. Mater. Sci., 55, 12385 (2020). DOI: 10.1007/s10853-020-04812-2
- R. Ferrando, J. Phys.: Condens. Matter., 27, 013003 (2015). DOI: 1 0.1088/0953-8984/27/1/013003
- A.S. Shirinyan, M. Wautelet, Nanotechnology, 15, 1720 (2004). DOI: 10.1088/0957-4484/15/12/004
- L.D. Geoffrion, G. Guisbiers, J. Phys. Chem. C, 124, 14061 (2020). DOI: 10.1021/acs.jpcc.0c04356
- Y. Dahan, G. Makov, R.Z. Shneck, Calphad, 53, 136 (2016). DOI: 10.1016/j.calphad.2016.04.006
- W.J. Jasper, N. Anand, J. Mol. Liq., 281, 196 (2019). DOI: 10.1016/j.molliq.2019.02.039
- G. Kaptay, J. Mater. Sci., 47, 8320 (2012). DOI: 10.1007/s10853-012-6772-9
- V.B. Fedoseev, Phys. Solid State, 66 (11), 1908 (2024). DOI: 10.61011/PSS.2024.11.60103.252
- A.V. Shishulin, V.B. Fedoseev, Tech. Phys., 65, 340 (2020). DOI: 10.1134/S1063784220030238
- A.V. Shishulin, V.B. Fedoseev, Tech. Phys. Lett., 45, 697 (2019). DOI: 10.1134/S1063785019070289
- V.B. Fedoseev, A.V. Shishulin, Phys. Solid State, 60, 1398 (2018). DOI: 10.1134/S1063783418070120
- G. Guisbiers, S. Khanal, F. Ruiz-Zepeda, J.R. de la Puente, M. Jose-Yacaman, G. Guisbiers, S. Khanal, F. Ruiz-Zepeda, J. Roque De La Puente, M. Jose-Yacaman, Nanoscale, 6, 14630 (2014). DOI: 10.1039/c4nr05739b
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.