The study of stripline resonators and oscillatory circuits interacting through a thin metal layer
Belyaev B. A.1,2,3, Boev N.M.2,3, Serzhantov A. M. 1,2, Krekov S. D.3, Leksikov A. A.3, Bal’va Ya. F.3, Khodenkov S. A.1
1Siberian State University of Science and Technology, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: belyaev@iph.krasn.ru, nik88@inbox.ru, cubicus@mail.ru, sdk@kirensky.ru, a.a.leksikov@gmail.com, slava_saa@mail.ru, hsa1982sibsau@mail.ru
The possibility of creating bandpass filters with an ultrawide rejection band is shown. These filters are based on resonances of odd oscillation modes of each twoconductor resonator whose stripline conductors are separated by a metal layer thinner than the skin layer at the passband frequencies. A thin metal layer weakly absorbs and reflects microwave power at the frequency of an odd oscillation mode, since in this case currents in the resonator stripline conductors are oppositely directed and, unlike the even mode, induce almost no current in the metal layer. The developed equivalent circuit on lumped elements describes the revealed effect behavior depending on the metal layer thickness. The measured frequency responses of the experimental sample of two circuits on lumped elements coupled through a metal layer, which are constructed in accordance with the equivalent circuit, are in good agreement with the calculated characteristics both with and without a metal layer. Keywords: substrate, stripline resonator, coupling coefficient, oscillation mode.
- R. Sukhu, Magnitnye tonkie plenki (Mir, M., 1967). (in Russian)
- B.A. Belyaev, A.V. Izotov, P.N. Solovev, N.M. Boev, Phys. Status Solidi RRL, 14, 1900467 (2020). DOI: 10.1002/pssr.201900467
- [A.B. Rinkevich, E.A. Kuznetsov, M.A. Milyaev, L.N. Romashev, V.V. Ustinov, Phys. Met. Metallogr., 121 (12), 1137 (2020). DOI: 10.1134/S0031918X2012011X
- A.N. Babitskii, B.A. Belyaev, G.V. Skomorokhov, A.V. Izotov, R.G. Galeev, Tech. Phys. Lett., 41 (4), 324 (2015). DOI: 10.1134/S1063785015040021
- G.Yu. Melnikov, S.V. Komogortsev, A.V. Svalov, A.A. Gorchakovskiy, I.G. Vazhenina, V. Kurlyandskaya, Sensors, 24, 6308 (2024). DOI: 10.3390/s24196308
- A.N. Lagarkov, K.N. Rozanov, J. Magn. Magn. Mater., 321, 2082 (2009). DOI: 10.1016/j.jmmm.2008.08.099
- B.A. Belyaev, A.O. Afonin, A.V. Ugrymov, I.V. Govorun, P.N. Solovev, A.A. Leksikov, Rev. Sci. Instrum., 91, 114705 (2020). DOI: 10.1063/5.0009045
- Z. Li, S. Butun, K. Aydin, ACS Photon., 2, 183 (2015). DOI: 10.1021/ph500410u
- B.A. Belyaev, V.V. Tyurnev, D.A. Shabanov, Izv. vuzov. Fizika, 68 (1), 76 (2025). DOI: 10.17223/00213411/68/1/9 (in Russian)
- I.V. Antonets, L.N. Kotov, S.V. Nekipelov, E.N. Karpushov, Tech. Phys., 49 (11), 1496 (2004). DOI: 10.1134/1.1826197
- N. Ahmad, J. Stokes, M.J. Cryan, J. Opt., 16, 125003 (2014). DOI: 10.1088/2040-8978/16/12/125003
- G. Nimtz, U. Panten, Ann. Phys., 19 (1-2), 53 (2010). DOI: 10.1002/andp.200910389
- N.M. Boev, A.M. Serzhantov, N.B. Zav'yalov, S.D. Krekov, Ya.F. Bal'va, A.A. Aleksandrovsky, A.A. Leksikov, Poloskovyi polosno-propuskayushchiy fil'tr garmonik, patent RU 2793079 (zayavl. 28.11.2022, opubl. 28.03.2023). BI N 10 (2023). (in Russian)
- V.V. Tyurnev, B.A. Belyaev, Elektronnaya tekhnika. Ser. Elektronika SVCh, N 4 (428), 25 (1990). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.