Effect of the activation environment on the thermocatalytic properties of bimetallic nanoparticles on the hexagonal boron nitride surface
Konopatsky A.S. 1, Kalinina V.V.1, Barilyuk D.V.1, Shtansky D.V.1
1National University of Science and Technology MISiS, Moscow, Russia
Email: konopatskiy@misis.ru

PDF
This study investigates the effect of activation environment on the catalytic performance of heterogeneous nanostructured catalysts based on FePt bimetallic nanoparticles supported on layered hexagonal boron nitride h-BN in carbon monoxide oxidation reactions. The material's structure was characterized by transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and energydispersive Xray spectroscopy (EDS) elemental mapping. The surface chemical state of activated samples was analyzed using Xray photoelectron spectroscopy (XPS). The results demonstrate that the choice of activation environment (hydrogen/helium) strongly affects the CO conversion temperature. Keywords: nanomaterials, catalysis, CO oxidation, activation.
  1. F. Doherty, H. Wang, M. Yang, B.R. Goldsmith, Catal. Sci. Technol., 10, 5772 (2020). DOI: 10.1039/D0CY01316A
  2. N.K. Soliman, J. Mater. Res. Technol., 8, 2395 (2019). DOI: 10.1016/j.jmrt.2018.12.012
  3. J.H. Yang, J.D. Henao, M.C. Raphulu, Y. Wang, T. Caputo, A.J. Groszek, M.C. Kung, M.S. Scurrell, J.T. Miller, H.H. Kung, J. Phys. Chem. B, 109, 10319 (2005). DOI: 10.1021/jp050818c
  4. S. Xie, Y. Lu, K. Ye, W. Tan, S. Cao, C. Wang, D. Kim, X. Zhang, J. Loukusa, Y. Li, Y. Zhang, L. Ma, S.N. Ehrlich, N.S. Marinkovic, J. Deng, M. Flytzani-Stephanopoulos, F. Liu, Environ. Sci. Technol., 58, 12731 (2024). DOI: 10.1021/acs.est.4c03078
  5. A.S. Konopatsky, D.V. Leybo, K.L. Firestein, I.V. Chepkasov, Z.I. Popov, E.S. Permyakova, I.N. Volkov, A.M. Kovalskii, A.T. Matveev, D.V. Shtansky, D.V. Golberg, ChemCatChem, 12, 1691 (2020). DOI: 10.1002/cctc.201902257
  6. X. Li, J. Zhang, S. Zhang, S. Xu, X. Wu, J. Chang, Z. He, J. Alloys Compd., 864, 158153 (2021). DOI: 10.1016/j.jallcom.2020.158153
  7. A.S. Konopatskii, K.L. Firestein, I.N. Volkov, D.V. Leibo, V.V. Kalinina, D.V. Golberg, D.V. Shtanskii, Tech. Phys. Lett., 47, 792 (2021). DOI: 10.1134/S1063785021080186
  8. K.A. Stoerzinger, M. Favaro, P.N. Ross, J. Yano, Z. Liu, Z. Hussain, E.J. Crumlin, J. Phys. Chem. B, 122, 864 (2018). DOI: 10.1021/acs.jpcb.7b06953
  9. R.M. Al Soubaihi, K.M. Saoud, J. Dutta, Catalysts, 8, 660 (2018). DOI: 10.3390/catal8120660
  10. K. Liu, A. Wang, T. Zhang, ACS Catal., 2, 1165 (2012). DOI: 10.1021/cs200418w

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru