Control of hydrogen-air mixture detonation processes by adding microdispersed aluminum particles
Khmel T.A.
1, Lavruk S.A.
1, Afanasenkov A.A.
11Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: khmel@itam.nsc.ru, afanasenkov@itam.nsc.ru
The results of numerical modeling of cellular detonation of hydrogen-air mixtures with additives of dispersed micron-sized aluminum particles are presented. The effect of particle size and loading on the process characteristics is established. The variety of cellular detonation forms is shown: with a regular and irregular cell, with oblique cells and an inclined front, depending on the distribution of particles in space. The development of combined instability with a layered distribution of particles is demonstrated. The obtained results allow us to consider additives of aluminum particles as a control factor for the implementation of different detonation modes in hydrogen-containing hybrid mixtures. Keywords: Detonation, gas suspensions, hydrogen-air mixture, aluminum particles, numerical modeling.
- B.A. Khasainov, B. Veyssiere, in Dynamics of explosions (AIAA, 1988), p. 284. DOI: 10.2514/5.9781600865886.0284.0299
- W. Wu, Y. Wang, K. Wu, Z. Ma, W. Han, J. Wang, G. Wang, M. Zhang, Int. J. Hydrog. Energy, 48, 24089 (2023). DOI: 10.1016/j.ijhydene.2023.03.078
- B. Veyssiere, W. Ingignoli, Shock Waves, 12, 291 (2003). DOI: 10.1007/s00193-002-0168-8
- T.A. Khmel, S.A. Lavruk, Combust. Explos. Shock Waves, 60, 374 (2024). DOI: 10.1134/S0010508224030109
- A.A. Afanasenkov, T.A. Khmel, Chelyab. Fiz.-Mat. Zh., 9 (2), 177 (2024) (in Russian). DOI: 10.47475/2500-0101-2024-9-2-177-186
- T.A. Khmel, S.A. Lavruk, Tech. Phys. Lett., 50 (4), 76 (2024). DOI: 10.61011/PJTF.2024.08.57519.19832
- I.A. Bedarev, K.V. Rylova, A.V. Fedorov, Combust. Explos. Shock Waves, 51, 528 (2015). DOI: 10.1134/S0010508215050032
- I.A. Bedarev, V.M. Temerbekov, Tech. Phys. Lett. 47, 695 (2021). DOI: 10.1134/S1063785021070166
- I.A. Bedarev, V.M. Temerbekov, Int. J. Hydrog. Energy, 47, 38455 (2022). DOI: 10.1016/j.ijhydene.2022.08.307
- G. Ciccarelli, T. Ginsberg, J. Boccio, C. Economos, K. Sato, M. Kinoshita, Combust. Flame, 99, 212 (1994). DOI: 10.1016/0010-2180(94)90124-4
- D.S. Sundaram, V. Yang, V.E. Zarko, Combust. Explos. Shock Waves, 51 (2), 173 (2015). DOI: 10.1134/S0010508215020045
- B.J. McBride, Computer program for calculation of complex chemcal equilibrium compositions and applications [Electronic source]. https://cearun.grc.nasa.gov/
- S.R. Tieszen, M.P. Sherman, W.B. Benedick, J.E. Shepherd, R. Knystautas, J.H.S. Lee, in Dynamics of explosions (AIAA, 1986), p. 205. DOI: 10.2514/5.9781600865800.0205.0219
- T.A. Khmel, S.A. Lavruk, Combust. Explos. Shock Waves, 58, 253 (2022). DOI: 10.1134/S0010508222030017
- A.V. Fedorov, T.A. Khmel', Combust. Explos. Shock Waves, 44, 343 (2008). DOI: 10.1007/s10573-008-0042-9
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.