Growth of atomically smooth AlN layers on Si(111) substrates through an amorphous SixNy layer by plasma-assisted molecular beam epitaxy
Gridchin V. O.1,2,3, Dautov A. M.1,2, Shugabaev T.1,2, Lendyashova V. V.1,2, Kotlyar K. P.1,2,3, Sotnik G. P. 4, Kozodaev D. A.4, Pirogov E. V.2, Reznik R. R.1, Lobanov D. N.5, Kuznetsov A.2,6, Bolshakov A. D.2,6, Cirlin G. E.1,2,3
1St. Petersburg State University, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
3Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
4LLC "NOVA SPB", Saint Petersburg, Russia
5Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
6Photonics, Quantum Technologies and 2D Materials, Dolgoprudny, Moscow Region, Russia
Email: gridchin@spbau.ru

PDF
The study focuses on the growth of AlN layers on Si(111) substrates using plasma-assisted molecular beam epitaxy. The influence of the substrate temperature on the crystalline quality of the AlN layers is systematically investigated. It is demonstrated that the predeposition of an amorphous SixNy layer on the Si(111) surface followed by the deposition of approximately ~2 monolayers of Al allows one the formation of AlN layer with a surface roughness as less as 0.43 nm at a layer thickness of 170 nm. The results are of interest for the monolithic integration of III-N optoelectronic and radio frequency devices with silicon-based technologies. Keywords: Aluminum nitride, molecular beam epitaxy, semiconductors, silicon.
  1. K. Vyas, D.H.G. Espinosa, D. Hutama, S.K. Jain, R. Mahjoub, E. Mobini, K.M. Awan, J. Lundeen, K. Dolgaleva, Adv. Phys. X, 9 (1), 2097020 (2022). DOI: 10.1080/23746149.2022.2097020
  2. M. Feng, J. Liu, Q. Sun, H. Yang, Prog. Quantum Electron., 77, 100323 (2021). DOI: 10.1016/j.pquantelec.2021.100323
  3. V.G. Dubrovskii, G.E. Cirlin, D.A. Kirilenko, K.P. Kotlyar, I.S. Makhov, R.R. Reznik, V.O. Gridchin, Nanoscale Horiz., 9, 2360 (2024). DOI: 10.1039/D4NH00412D
  4. U. Kaiser, I.I. Khodos, J. Jinschek, W. Rechter, Microscopy, 48 (5), 545 (1999). DOI: 10.1093/oxfordjournals.jmicro.a023714
  5. J. Yang, J. Xiao, M. Tao, K. Tang, B. Zhang, H. Wang, M. He, J. Liu, J. Wang, M. Wang, IEEE Electron. Dev. Lett., 46 (2), 270 (2024). DOI: 10.1109/LED.2024.3516043
  6. D. Milakhin, T. Malin, V. Mansurov, Y. Maidebura, D. Bashkatov, I. Milekhin, S. Goryainov, V. Volodin, I. Loshkarev, V. Vdovin, A. Gutakovskii, S. Ponomarev, K. Zhuravlev, Surf. Interfaces, 51, 104817 (2024). DOI: 10.1016/j.surfin.2024.104817
  7. A. Le Louarn, S. Vezian, F. Semond, J. Massies, J. Cryst. Growth, 311 (12), 3278 (2009). DOI: 10.1016/j.jcrysgro.2009.04.001
  8. M. Warmuzek, Aluminum-silicon casting alloys: atlas of microstructures (ASM International, Detroit, 2016)
  9. S. Fan, Yu. Yin, R. Liu, H. Zhao, Z. Liu, Q. Sun, H. Yang, J. Appl. Phys., 136 (14), 145301 (2024). DOI: 10.1063/5.0219167
  10. W.H. Chen, Z.Y. Qin, X.Y. Tian, X.H. Zhong, Z.H. Sun, B.K. Li, R.S. Zheng, Y. Guo, H.L. Wu, Molecules, 24 (8), 1562 (2019). DOI: 10.3390/molecules24081562
  11. J. Gleize, M.A. Renucci, J. Frandon, E. Bellet-Amalric, B. Daudin, J. Appl. Phys., 93 (4), 2065 (2003). DOI: 10.1063/1.1539531
  12. X. Pan, M. Wei, C. Yang, H. Xiao, C. Wang, X. Wang, J. Cryst. Growth, 318 (1), 464 (2011). DOI: 10.1016/j.jcrysgro.2010.10.173

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru