Numerical investigation of the effect of tangential helium injection on the linear stability of a compressible boundary layer on a flat plate
Matveev I.S.1, Morozov S.O. 1, Lukashevich S.V. 1, Shiplyuk A. N. 1
1Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: i.matveev@g.nsu.ru, morozov@itam.nsc.ru, Lukashevich@itam.nsc.ru, shiplyuk@itam.nsc.ru

PDF
The paper is devoted to the numerical investigation of the effect of the geometry of a single channel for tangential helium injection on disturbances in a compressible boundary layer. The boundary layer calculations are performed within the framework of the Navier-Stokes equations in a two-dimensional plane formulation for compressible flows. The boundary layer stability calculations are carried out within the framework of the linear stability theory in the locally parallel approximation taking into account a binary gas mixture. It is shown that, regardless of the configuration of a single channel, the introduction of helium into the boundary layer stabilizes disturbances of the second mode and destabilizes disturbances of the first mode in the region close to the injection site. However, at a sufficient distance from the gas injection site, the growth rates of two-dimensional disturbances of the first and second Mack modes are less than in the case without injection. It is also shown that, at a constant mass flow rate, the channel geometry mainly affects the boundary layer stability only in the helium injection region. An increase in the channel height leads to an increase in the growth rates of the two-dimensional disturbances of the second mode and a decrease in the growth rates of the two-dimensional disturbances of the first mode. Keywords: boundary layer, linear theory of stability, first Mack mode, second Mack mode, boundary layer stabilization.
  1. M.V. Morkovin, E. Reshotko, T. Herbert. Bull. APS, 39 (9), 1 (1994)
  2. L.M. Mack. AIAA J., 13 (3), 278 (1975). DOI: 10.2514/3.49693
  3. S.A. Gaponov, A.A. Maslov. Razvitie vozmushchenii v szhimaemykh potokakh (Nauka, Novosibirsk, 1980) (in Russian)
  4. A. Fedorov. Ann. Rev. Fluid Mech., 43, 79 (2011). DOI: 10.1146/annurev-fluid-122109-160750
  5. S.A. Gaponov, N.M. Terekhova. Thermophys. Aeromechan., 19 (2), 209 (2012). DOI: 10.1134/S0869864312020059
  6. S.A. Gaponov, B.V. Smorodsky. Thermophys. Aeromechan., 27 (2), 205 (2020). DOI: 10.1134/S0869864320020043
  7. S.A.Gaponov, Yu.G. Ermolaev, N.N. Zubkov, A.D. Kosinov, V.I. Lysenko, B.V. Smorodskii, A.A. Yatskikh. Fluid Dynamics, 52 (6), 769 (2017). DOI: 10.1134/S0015462817060052
  8. V.M. Fomin, F.V. Fedorov, V.F. Kozlov, A.N. Shiplyuk, A.A. Maslov, E.V. Burov, N.D. Malmuth. Dokl. Phys., 49 (12), 763 (2004). DOI: 10.1134/1.1848635
  9. S.O.Morozov, S.V. Lukashevich, V.G. Soudakov, A.N. Shiplyuk. Thermophys. Aeromechan., 25 (6), 793 (2018). DOI: 10.1134/S086986431806001X
  10. S.V. Lukashevich, S.O. Morozov, A.N. Shiplyuk. Tech. Phys. Lett., 38`(12), 1077 (2012). DOI: 10.1134/S1063785012120073
  11. D.A. Bountin, A.A. Maslov. Tech. Phys. Lett., 43 (7), 623 (2017). DOI: 10.1134/S1063785017070021
  12. A.V. Fedorov, A.V. Novikov, N.N. Semenov. Int. J. Fluid Mechan. Res., 47 (4), 329 (2020). DOI: 10.1615/InterJFluidMechRes.2020033001
  13. A.V. Fedorov, V. Soudakov, I. Egorov, A.A. Sidorenko, Y.V. Gromyko, D.A. Bountin, P.A. Polivanov, A.A. Maslov. AIAA J., 53 (9), 2512 (2015). DOI: 10.2514/1.J053666
  14. D.A. Buntin, A.A. Maslov, Y.V. Gromyko. Tech. Phys. Lett., 43 (10), 916 (2017). DOI: 10.1134/S1063785017100194
  15. A.V. Novikov, A.O. Obraz, D.A. Timokhin. Fluid Dynam., 58, 232 (2023). DOI: 10.1134/S001546282260184X
  16. F. MiroMiro, F. Pinna. J. Fluid Mech., 890, 1 (2020). DOI: 10.1017/jfm.2020.804
  17. S.O. Morozov, B.V. Smorodskii, A.N. Shiplyuk. Tez. dokl. XVII Vserossiiskii seminar s mezhdunarodnym uchastiem: dinamika mnogofaznykh sred (Novosibirsk, Rossiya, 2021), s. 91 (in Russian)
  18. V.I. Lysenko, S.A. Gaponov, B.A. Smorodsky, Y.G. Yermolaev, A.D. Kosinov. Phys. Fluids, 31 (10), 104103 (2019). DOI: 10.1063/1.5112145
  19. A.V. Boiko, K.V. Demyanko, Y.M. Nechepurenko. Russ. J. Numerical Analysis and Mathematical Modelling, 32 (1), 1 (2017). DOI: 10.1515/rnam-2017-0001
  20. M.R. Malik. J. Comp. Phys., 86 (2), 376 (1990). DOI: 10.1016/0021-9991(90)90106-B
  21. J. Samareh-Abolhassani, I. Sadrehaghighi, R.E. Smith, S.N. Tiwari. J. Aircraft, 27 (10), 873 (1990). DOI: 10.2514/3.45951

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru