Shock compressibility and spall strength of the composite based on Kevlar and the epoxy resin
A.V. Utkin1, V.M. Mochalova1, A.V. Savchenko1, V.E. Breykina1
1Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka,Moscow region, Russia
Email: utkin@icp.ac.ru

PDF
This paper performed experimental studies of shock-wave properties of a composite of an ballistic aramid fabric and an epoxy binder with longitudinal and transverse orientation of fibers in relation of a wave propagation direction. Profiles of a particle velocity were recorded by means of laser interferometry. It is shown that a shock Hugoniot of the composite does not depend on orientation of the fibers and at 17 GPa it exhibits a break that indicates chemical decomposition. The most pronounced feature of the velocity profiles in the samples with longitudinal orientation of the fibers is a two-wave configuration at the pressure of shock compression below 12 GPa. It is shown that the spall strength of the Kevlar-based composite with longitudinal orientation of the fibers is approximately two times higher than with transverse orientation and is 180 MPa. Keywords: composite, shock waves, shock Hugoniot, spall strength, Kevlar, epoxy resin.
  1. S. Katz, E. Grossman, I. Gouzman, M. Murat, E. Wiesel, H.D. Wagner. Int. J. Impact Eng., 35 1606 (2008)
  2. D.M. Dattelbaum, J.D. Coe, P.A. Rigg, R.J. Scharff, J.T. Gammel. J. Appl. Phys., 116, 194308 (2014). DOI: 10.1063/1.4898313
  3. T. Homae, T. Shimizu, K. Fukasawa, O. Masamura. J. Reinf. Plast. Compos., 25, 1215 (2006). DOI: 10.1177/0731684406066370
  4. A.V. Bushman, V.P. Efremov, V.E. Fortov, G.I. Kanel, I.V. Lomonosov, V.Y. Ternovoi, A.V. Utkin. Matter, 1991, 79 (1992). DOI: 10.1016/B978-0-444-89732-9.50018-2
  5. V. Mochalova, A. Utkin, A. Savinykh, G. Garkushin. Compos. Struct., 273, 114309 (2021). DOI: 10.1016/j.compstruct.2021.114309
  6. D.M. Dattelbaum, J.D. Coe. The dynamic-loading response of carbon-fibre-filled polymer composites. In: Dyn. Deform. Damage Fract. Compos. Mater. Struct. (Elsevier, 2023), p. 195-244
  7. J.C.F. Millett, N.K. Bourne, Y.J.E. Meziere, R. Vignjevic, A. Lukyanov. Compos. Sci. Technol., 67, 3253 (2007). DOI: 10.1016/j.compscitech.2007.03.034
  8. W. Riedel, H. Nahme, K. Thoma. Equation of state properties of modern composite materials: Modeling shock, release and spallation, In: AIP Conf. Proc. (American Institute of Physics, 2004), p. 701-706. DOI: 10.1063/1.1780335
  9. C.S. Alexander, C.T. Key, S.C. Schumacher. J. Appl. Phys., 114, 223515 (2013). https://doi.org/10.1063/1.4846116
  10. S.A. Bordzilovskii, S.M. Karakhanov, L.A. Merzhievskii. FGV, (in Russian). 33, 132 (1997)
  11. A.V. Bushman, V.P. Efremov, I.V. Lomonosov, A.V. Utkin, V.E. Fortov. TVT, 28, 1232 (1990) (in Russian)
  12. V.M. Mochalova, A.V. Utkin, V.E. Rykova, M. Endres, D.H.H. Hoffmann. Arch. Mech., 71, 417 (2019). DOI: 10.24423/aom.3144
  13. T. Lassig, F. Bagusat, S. Pfandler, M. Gulde, D. Heunoske, J. Osterholz, W. Stein, H. Nahme, M. May. Struct., 182, 590 (182). DOI: 10.1016/j.compstruct.2017.09.031
  14. S. Khatiwada, C.A. Armada, E.V. Barrera. Procedia Eng., 58, 4 (2013)
  15. C. Frias, S.A. Macdonald, D. Townsend, N.K. Bourne, C. Soutis, P.J. Withers. 19th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter, Florida, 60 (8), M1-056 (2015)
  16. S. Yang, V.B. Chalivendra, Y.K. Kim. Compos. Struct., 168, 120 (2017)
  17. I. Taraghi, A. Fereidoon, F. Taheri-Behrooz. Mater. Des., 53, 152 (2014). DOI: 10.1016/j.matdes.2013.06.051
  18. P.N.B. Reis, J.A.M. Ferreira, Z.Y. Zhang, T. Benameur, M.O.W. Richardson. Compos. Part B Eng., 46, 7 (2013). DOI: 10.1016/j.compositesb.2012.10.028
  19. W. Xie, W. Zhang, L. Guo, Y. Gao, D. Li, X. Jiang. Compos. Part B Eng., 153, 176 (2018)
  20. C. Pirvu, L. Deleanu, C. Lazaroaie. Ballistic tests on packs made of stratified aramid fabrics LFT SB1. In: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 2016: p. 012099. https://iopscience.iop.org/article/10.1088/1757-899X/147/1/012099/meta (accessed October 3, 2024)
  21. M.J. Donough, B.G. Prusty, M.J. Van Donselaar, E.V. Morozov, H. Wang, P.J. Hazell, A.W. Philips, N.A. St John. Int. J. Impact Eng., 171, 104373 (2023)
  22. V. Mochalova, A. Utkin, A.V. Pavlenko, S.N. Malyugina, S.S. Mokrushin. ZhTF, 89, 126 (2019) (in Russian)
  23. V. Mochalova, A. Utkin, D. Nikolaev, A. Savinykh, G. Garkushin, A. Kapasharov, G. Malkov. J. Appl. Phys., 136, 045902 (2024). DOI: 10.1063/5.0217287
  24. A.E. Tarasov, E.R. Badamshina, D.V. Anokhin, S.V. Razorenov, G.S. Vakorina. ZhTF, 88, 34 (2018) (in Russian)
  25. T.A. Rostilov, V.S. Ziborov. TVT, 60, 922 (2022) (in Russian)
  26. J.E. Pepper, J. Huneault, M. Rahmat, B. Ashrafi, O.E. Petel. Int. J. Impact Eng., 113, 203 (2018)
  27. J. Huneault, J.E. Pepper, M. Rahmat, B. Ashrafi, O.E. Petel. J. Dyn. Behav. Mater., 5, 13 (2019). DOI: 10.1007/s40870-018-00180-w
  28. R.C. Huber, J. Peterson, J.D. Coe, D.M. Dattelbaum, L.L. Gibson, R.L. Gustavsen, J.M. Lang, S.A. Sheffield. J. Appl. Phys., 127, 105902 (2020). DOI: 10.1063/1.5124252
  29. R.C. Huber, D.M. Dattelbaum, J.M. Lang, J.D. Coe, J.H. Peterson, B. Bartram, L.L. Gibson. J. Appl. Phys., 133, 035106 (2023)
  30. P.J. Hazell, H. Wang. Shock response of polymer composites. In: Dyn. Deform. Damage Fract. Compos. Mater. Struct. (Elsevier, 2023), p. 309-336. https://www.sciencedirect.com/ science/article/pii/B9780128239797000120 (accessed April 10, 2024)
  31. F. Yuan, L. Tsai, V. Prakash, A.M. Rajendran, D.P. Dandekar. Int. J. Solids Struct., 44, (2007) 7731 (2007)
  32. E. Zaretsky, G. DeBotton, M. Perl. Int. J. Solids Struct., 41, 569 (2004). DOI: 10.1016/j.ijsolstr.2003.09.026
  33. A.V. Utkin, V.M. Mochalova, V.V. Yakushev, V.E. Rykova, M.Yu. Shakula, A.V. Ostrik, V.V. Kim, I.V. Lomonosov. TVT, 59, 189 (2021) (in Russian). DOI: 10.31857/S0040364421020137
  34. A.V. Utkin. PMTF, 34, 140 (1993) (in Russian)
  35. A.V. Fedorov, A.L. Mikhailov, S.A. Finyushin, D.A. Kalashnikov, E.A. Chudakov, E.I. Butusov, I.S. Gnutov. ZhETF, 149, 792 (2016) (in Russian)
  36. N.Kh. Akhmadeev, G.M. Gainatulina. Pis'ma v ZhTF, 11, 897 (1985) (in Russian)
  37. D.C. Wood, G.J. Appleby-Thomas, A. Hameed, N.R. Barnes, A. Hughes, P.J. Hazell. J. Mater. Sci., 53, 11415 (2018). DOI: 10.1007/s10853-018-2431-0
  38. P.-L. Hereil, O. Allix, M. Gratton. J. Phys., IV (7), C3 (1997). DOI: 10.1051/jp4:1997391
  39. V. Mochalova, A. Utkin, D. Nikolaev. J. Appl. Phys., 133, 240701 (2023). DOI: 10.1063/5.0151292
  40. A.P. Kuznetsov, S.A. Kolesnikov, A.A. Golubev, K.L. Gubskii, S.V. Dudin, A.V. Kantsyrev, V.I. Turtikov, A.V. Utkin, V.V. Yakushev. PTE, (in Russian). 3, 116 (2011)
  41. G.I. Kanel', S.V. Razorenov, A.V. Utkin, V.E. Fortov. Udarno-volnovye yavleniya v kondensirovannykh sredakh (Yanus-K, M., 1996) (in Russian)
  42. V. Mochalova, A. Utkin, V. Sosikov, V. Yakushev, A. Zhukov. Shock Waves, 32, 715 (2022). https://doi.org/10.1007/s00193-022-01104-3.
  43. D.M. Dattelbaum, J.D. Coe. Polymers, 11, 493 (2019). DOI: 10.3390/polym11030493
  44. S.A. Novikov, I.I. Divnov, A.G. Ivanov. Fizika metallov i metallovedenie, 21, 608 (1966) (in Russian)
  45. A.V. Utkin, V.A. Sosikov. PMTF, 46, 29 (2005) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru