Prospect of application of gradient cellular structures with controlled permittivity for 3D-printing of the Luneburg lens
M. F. Akhmatnabiev 1,2, M. V. Timoshenko2, M. M. Sychov1,2, A. A. Petrov3, S. V. Diachenko1,2
1Branch of the Petersburg Institute of Nuclear Physics named after B.P. Konstantinov of the National Research Center "Kurchatov Institute" --- Institute of Silicate Chemistry named after I.V. Grebenshchikov, Saint Petersburg, Russia
2Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
3Research Institute "Vector", St. Petersburg, Russia
Email: svdiachenko@technolog.edu.ru

PDF
The study included designing of a material for 3D-printing of the Luneburg lens and investigating electrical and mechanical properties of the cellular materials and controllability of their permittivity for use in manufacturing the lens. It is shown that by means of structures based on minimum-energy triply-periodic surfaces, it is possible to obtain the required values of permittivity by varying a degree of filling of space with matter. Geometries of the minimum-energy triply-periodic surfaces are selected, a formula of the dependence of permittivity on the degree of filling of the structure space is obtained, thereby making it possible to create intermediate layers of the Luneburg lens with a pre-defined value of permittivity. Keywords: Luneberg lens, spherical lens, antenna lens, permittivity, additive technologies, 3D-printing, cellular materials, gradient materials, minimum-energy triply-periodic surfaces.
  1. B.A. Panchenko. Antenny, 12 (2010) (in Russian)
  2. E.G. Zelkin, R.A. Petrova. Linzovye antenny (Sovetskoe radio, M., 1974) (in Russian)
  3. R.K. Luneburg. Providence, RT (Brown Univ. Press, 1944)
  4. Sphere Antennas. Electronic source. Available at: www.matsing.com URL: https://www.matsing.com/product-category/antennas/product-families/sphere-antennas/ (date of access: 19.02.2025)
  5. M. Liang, W. Ng, K. Chang, K. Gbele, M.E. Gehm, H. Xin. IEEE Transactions on Antennas and Propagation, 62 (4), (2014). DOI: 10.1109/TAP.2013.2297165
  6. R.A. Bahr, A.O. Adeyeye, S. Van Rijs, M.M. Tentzeris. 3D-Printed Omnidirectional Luneburg Lens Retroreflectors for Low-Cost mm-Wave Positioning, 2020 IEEE International Conference on RFID (RFID) (Orlando, FL, USA, 2020), p. 1-7. DOI: 10.1109/RFID49298.2020.9244891
  7. K. Liu, C. Zhao, S. Qu, Y. Chen, J. Hu, S. Yang. IEEE Antennas and Wireless Propagation Lett., 20 (3), (2021). DOI: 10.1109/LAWP.2021.3054042
  8. G. Peeler, D. Archer. IRE Trans. Antennas Propag., 1 (1), (1953)
  9. X. Wu, J. Laurin. IEEE Trans. Antennas Propag., 55 (8), (2007). DOI: 10.1109/TAP.2007.901843
  10. L. Xue, V. Fusco. IET Microw Antennas Propag., 2 (2), (2008). DOI: 10.1049/IET-MAP%3A20070146
  11. L. Xue, V.F. Fusco. IET Microw. Antennas Propag., 1 (3), (2007). DOI: 10.1049/iet-map:20050203
  12. K. Sato, H. Ujiie. Electro. Commun. Jpn., 85 (9), (2002). DOI: 10.1002/ecja.1120
  13. C.S. Lee, S.W. Lee, R. Davis, J. Tsui Microw. Opt. Technol. Lett., 5 (2), (1992)
  14. Q. Cheng, H.F. Ma, T.J. Cui. Appl. Phys. Lett., 95 (18), (2009). DOI: 10.1063/1.3257375
  15. J. Feng, J. Fu, X. Yao, He Yong. Intern. J. Extreme Manufactur., 4 (2), (2022). DOI: 10.1088/2631-7990/ac5be6
  16. V. Shevchenko, S. Balabanov, M. Sychov, L. Karimova. ACS Omega, 8 (30), (2023). DOI: 10.1021/acsomega.3c01631
  17. S.V. Balabanov, A.I. Makogon, M.M. Sychev, A.A. Evstratov, A. Regazzi, J.M. Lopez-Cuesta. Tech. Phys., 65 (2), 211 (2020). DOI: 10.1134/S1063784220020036
  18. M.M. Sychov, L.A. Lebedev, S.V. Dyachenko, L.A. Nefedova. Acta Astronautica, 150, (2018). DOI: 10.1016/j.actaastro.2017.12.034
  19. S.V. Diachenko, L.A. Lebedev, M.M. Sychov, L.A. Nefedova. Tech. Phys., 63 (7), (2018). DOI: 10.1134/S1063784218070101
  20. X. Fan, Q. Tang, Q. Feng. Intern. J. Mechan. Sci., 204, (2021). DOI: 10.1016/j.ijmecsci.2021.106586
  21. X. Zhang, L. Jianga, X. Yanb. Virtual Phys. Prototyping., 18 (1), (2022). DOI: 10.1080/17452759.2022.2120406
  22. S. Yu, J. Sun, J. Ba. Mater. Design, 182, (2019). DOI: 10.1016/j.matdes.2019.108021
  23. M.V. Timoshenko, S.V. Balabanov, M.M. Sychov. Glass Phys. Chem., 49, (2023). DOI: 10.31857/S0132665123600243
  24. P. Vesely, D. Frovs, T. Hudec, J. Sedlavcek, P. Ctibor, K. Duvsek. Virtual Phys. Prototyping., 18 (1), (2023). DOI: 10.1080/17452759.2023.2170253
  25. D.W. Richerson, W.E. Lee. Modern Ceramic Engineering: Properties, Processing and Use in Design (CRC Press, 2018)
  26. M.A. Ramazanov, F.V. Hajiyeva, A.M. Maharramov. Integrated Ferroelectrics, 192 (1), (2018). DOI: 10.1080/10584587.2018.1521658
  27. A.A. Brandt, Issledovanie dielektrikov na sverkhvysokikh chastotakh (Fizmatgiz, M., 1963) (in Russian)
  28. M.P. Desole, A. Gisario. Intern. J. Adv. Manufacturing Technol., 132 (3-4), (2024). DOI: 10.1007/s00170-024-13430-0
  29. Plastmassy. Metod ispytaniya na szhatie (GOST 4651-2014, Standartinform, M., 2014), 26 s. (in Russian)
  30. Plastmassy. Metod ispytaniya na rastyazhenie (GOST 11262-2017, Standartinform, M., 2017), 24 s. (in Russian)
  31. Plastmassy. Metod ispytaniya na staticheskii izgib (GOST 4648-2014, Standartinform, M., 2014), 25 s. (in Russian)
  32. M.M. Sychev, T.S. Minakova, Yu.G. Slizhov, O.A. Shilova. Kislotno-osnovnye kharakteristiki poverkhnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Khimizdat, SPb., 2022) (in Russian)
  33. I. Ozsoy, A. Demirkol, A. Mimaroglu, H. Unal, Z. Demir. J. Mechan. Eng., 61 (10), (2015). DOI: 10.5545/sv-jme.2015.2632

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru