Electropulse (sparking") plasma sintering of fine-grained W + 10 %Ni tungsten alloys
Е.А. Lantsev1, N.V. Malekhonova1, А.V. Nokhrin1, K.E. Smetanina1, A.A. Murashov1, A.V. Voronin1, Yu. V. Blagoveshchenskiy2, A.V. Terent’ev2
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
2Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
Email: elancev@nifti.unn.ru, malekhonova@nifti.unn.ru, yuriblag@imet.ac.ru

PDF
The paper has investigated mechanisms of solid-phase electropulse plasma sintering of the W + 10 weight%Ni tungsten pseudoalloy. The composite powders W nucleus- Ni shell" were produced by a chemical-metallurgical method of deposition of nickel from a salt solution to a surface of industrial submicron tungsten particles. In order to reduce the oxygen and oxides concentrations, the composite powders were annealed in hydrogen at the temperatures 400 oC-600 oC. It also included the X-ray studies of the phase composition, electron-microscopic studies of micro-structure parameters and measurement of hardness of the tungsten pseudoalloys. Using the Yang-Cutler model, diffusion mechanisms were defined, which determine kinetics of plasma sintering of the submicron powders W nucleus- Ni shell". It has been shown that energy of powder sintering activation corresponds to energy of activation of diffusion along the grain boundaries in nickel, whereas a key mechanism of powder compaction is Coble creep. Keywords: tungsten, electropulse plasma sintering, diffusion, hardness.
  1. J.V. Haag IV, J. Wang, D.J. Edwards, W. Setyawan, M. Murayama. Scr. Mater., 213, 114587 (2022). DOI: 10.1016/j.scriptamat.2022.114587
  2. J. Das, G.A. Rao, S.K. Pabi. Mater. Sci. Eng. A, 527, 7841 (2010). DOI: 10.1016/j.msea.2010.08.071
  3. K.V. Povarova, P.V. Makarov, A.D. Ratner, E.K. Zavarzina, K.V. Volkov. Metally, 4, 39 (2002) (in Russian)
  4. Y. Sahin. J. Powder Technol., 3-4, 1 (2014). DOI: 10.1155/2014/764306
  5. A. Kumari, M. Sankaranarayana, T.K. Nandy. Int. J. Refr. Met. Hard Alloys, 67, 18 (2017). DOI: 10.1016/j.ijrmhm.2017.05.002
  6. R.M. German. Int. J. Refr. Met. Hard Alloys, 108, 105940 (2022). DOI: 10.1016/j.ijrmhm.2022.105940
  7. X. Gong, J.L. Fan, F. Ding, M. Song, B.Y. Huang, J.M. Tian. Mater. Sci. Eng. A, 528, 3646 (2011). DOI: 10.1016/j.msea.2011.01.070
  8. S.H. Islam, X. Qu, S.J. Askari, M. Tufail, X. He. Rare Metals, 26, 200 (2007). DOI: 10.1016/S1001-0521(07)60201-0
  9. L. Zhang, B. Chen, X. Chen, J. Sun, Y. Huang, W. Liu, Y. Ma. Mater. Sci. Eng. A, 852, 143696 (2022). DOI: 10.1016/j.msea.2022.143696
  10. R. Gero, L. Borukhin, I. Pikus. Mater. Sci. Eng. A, 302, 162 (2001). DOI: 10.1016/S0921-5093(00)01369-1
  11. E. Lang, A. Kapat, T.W. Morgan, J.P. Allain. J. Nucl. Mater., 544, 152672 (2021). DOI: 10.1016/j.jnucmat.2020.152672
  12. L.A. El-Guebaly, W. Setyawan, C.H. Henager Jr., R.J. Kurtz, G.R. Odette. Nucl. Mater. Energy., 29, 101092 (2021). DOI: 10.1016/j.nme.2021.101092
  13. R. Neu, H. Maier, M. Balden, S. Elgeti, H. Gietl, H. Greuner, A. Herrmann, A. Houben, V. Rohde, B. Sieglin, I. Zammuto. Fusion Eng. Des., 124, 450 (2017). DOI: 10.1016/j.fusengdes.2017.01.043
  14. S. Tokke, T. Laas, J. Priimets, V. Mikli, M. Antonov. Fusion Eng. Des., 164, 112215 (2021). DOI: 10.1016/j.fusengdes.2020.112215
  15. H. Maier, R. Neu, T. Schwarz-Selinger, U. von Toussaint, A. Manhard, T. Durbeck, K. Hunger. Nucl. Fusion, 60(12), 126044 (2020). DOI: 10.1088/1741-4326/abb890
  16. G. Parabhu, N.A. Kumar, M. Sankaranarayana, T.K. Nandy. Mater. Sci. Eng. A, 607, 63 (2014). DOI: 10.1016/j.msea.2014.03.130
  17. V.N. Chuvil'deev, A.V. Nokhrin, G.V. Baranov, M.S. Boldin, A.V. Moskvicheva, N.V. Sakharov, D.N. Kotkov, Yu.G. Lopatin, V.Yu. Belov, Yu.V. Blagoveshchenskii, N.A. Kozlova, D.A. Konychev, N.V. Isaeva. Metally, 2, 51 (2014) (in Russian)
  18. Y.J. Wu, Y.K. Li, D.H. Yu. Mater. Sci. Forum., 849, 745 (2016)
  19. Z.B. Li, K. He, G.H. Zhang, K.C. Chou. Metall. Mater. Trans. A, 51, 3090 (2020). DOI: 10.1007/s11661-020-05761-w
  20. D.V. Edmonds. Int. J. Refract. Met. Hard Mater., 10, 15 (1991). DOI: 10.1016/0263-4368(91)90007-B
  21. P.V. Krasovskii, A.V. Samokhin, A.A. Fadeev, M.A. Sinayskiy, S.K. Sigalev. J. Alloys Compd., 250, 265 (2018). DOI: 10.1016/j.jallcom.2018.03.367
  22. N. Deng, J. Li, W. Wang, D. Qu, K. Zhang, Z. Zhou. Int. J. Refract. Met. Hard Mater., 95, 105447 (2021). DOI: 10.1016/j.ijrmhm.2020.105447
  23. N. Deng, J. Li, S. Liang, H. Sun, Y. Guo. Powder Tech., 407, 117632 (2022). DOI: 10.1016/j.powtec.2022.117632
  24. L. Ding, D.P. Xiang, Y.Y. Li., C. Li, J.B. Li. Int. J. Refract. Met. Hard Mater., 33, 65 (2012). DOI: 10.1016/j.ijrmhm.2012.02.017
  25. A.V. Nokhrin, N.V. Malekhonova, V.N. Chuvil'deev, N.V. Melekhin, A.M. Bragov, A.R. Fillipov, M.S. Boldin, E.A. Lansev, N.V. Sakharov. Metals, 13, 1432 (2023). DOI: 10.3390/met13081432
  26. S. Eroglu, T. Baykara. J. Mater. Process. Tech., 103, 288 (2000). DOI: 10.1016/S0924-0136(00)00499-4
  27. M. Tokita. Ceramics, 4, 160 (2021). DOI: 10.3390/ceramics4020014
  28. E. Olevsky, D. Dudina. Field-Assisted Sintering (Springer Int. Publ., 2018), DOI: 10.1007/978-3-319-76032-2
  29. E.A. Lantsev, N.V. Malekhonova, A.V. Nokhrin, K.E. Smetanina, A.A. Murashov, G.V. Shcherbak, A.V. Voronin, A.A. Atopshev. ZhTF, 93, (in Russian). 1550 (2023). DOI: 10.61011/JTF.2023.11.56486.143-23
  30. E.A. Lantsev, N.V. Malekhonova, V.N. Chuvil'deev, A.V. Nokhrin, Yu.V. Tsvetkov, Yu.V. Blagoveshchenskii, M.S. Boldin, P.V. Andreev, K.E. Smetanina, N.V. Isaeva. FKhOM, 1, 24 (2022) (in Russian). DOI: 10.30791/0015-3214-2022-2-35-54
  31. E.A. Lantsev, N.V. Malekhonova, V.N. Chuvil'deev, A.V. Nokhrin, Yu.V. Tsvetkov, Yu.V. Blagoveshchenskii, M.S. Boldin, P.V. Andreev, K.E. Smetanina, N.V. Isaeva. FKhoM, 2, 35 (2022) (in Russian). DOI: 10.30791/0015-3214-2022-2-35-54
  32. D.V. Dudina, N.Yu. Cherkasova. Mater. Lett., 365, 136411 (2024). DOI: 10.1016/j.matlet.2024.136411
  33. M.B. Shongwe, S. Diouf, M.O. Durowoju, P.A. Olubambi, M.M. Ramakokovhu, B.A. Obadele. Int. J. Refract. Met. Hard Mater., 55, 16 (2016). DOI: 10.1016/j.ijrmhm.2015.11.001
  34. A.A. Mazilkin, B.B. Straumal, S.G. Protasova, M.F. Bulatov, B. Baretzky. Mater. Lett., 192,101 (2017). DOI: 10.1016/j.matlet.2016.12.049
  35. B. Guennec, D. Tingaud, R. Pires-Brazuna, L. Perri\`ere, N. Horikawa, G. Dirras. J. Alloy. Compd., 966, 171490 (2023). DOI: 10.1016/j.jallcom.2023.171490
  36. Z.Z. Fang, C. Ren, M. Simmons, P. Sun. Int. J. Refract. Met. Hard Mater., 92, 105281 (2020). DOI: 10.1016/j.ijrmhm.2020.105281
  37. D.V. Dudina, B.B. Bokhonov. Adv. Powd. Tech., 28, 641 (2017). DOI: 10.1016/j.apt.2016.12.001
  38. K.E. Smetanina, P.V. Andreev, A.V. Nokhrin, E.A. Lantsev, V.N. Chuvildeev. J. Alloy. Compd., 973, 172823 (2024). DOI: 10.1016/j.jallcom.2023.172823
  39. E. Fortuna, K. Sikorski, K.J. Kurzydlowski. Mater. Charact., 52, 323 (2004). DOI: 10.1016/j.matchar.2004.06.011
  40. D.P. Rodionov, I.V. Geras'eva, Yu.V. Khlebnikova, V.A. Sazonova, B.K. Sokolov. FMM, 99, 88 (2005) (in Russian)
  41. D.V. Dudina, B.B. Bokhonov, A.V. Ukhina, A.G. Anisimov, V.I. Mali, M.A. Esikov, I.S. Batraev, O.O. Kuzhnechik, L.P. Pilinevich. Mater. Lett., 168, 62 (2016). DOI: 10.1016/j.matlet.2016.01.018
  42. J. Wang, J. Ding, W. Liu, Y. Ma, W. Zhu, S. Meng, C. Liang, Q. Cai. Int. J. Refract. Met. Hard Mater., 114, 106251 (2023). DOI: 10.1016/j.ijrmhm.2023.106251
  43. M.N. Rahaman. Ceramic processing and sintering. 2nd ed. (Marcel Dekker Inc., NY., 2003)
  44. W.S. Young, I.B. Culter. J. Am. Ceram. Soc., 53, 659 (1970). DOI: 10.1111/j.1151-2916.1970.tb12036.x
  45. A.K. Nanda Kumar, M. Watabe, K. Kurokawa. Ceram. Int., 37, 2643 (2011). DOI: 10.1016/j.ceramint.2011.04.011
  46. G.Dzh. Frost, M.F. Eshbi. Karty mekhnizmov deformatsii (Metallurgiya, Chelyabinsk, 1989) (in Russian)
  47. J. Webb, S. Gollapudi, I. Charit. Int. J. Refract. Met. Hard Mater., 82, 69 (2019). DOI: 10.1016/j.ijrmhm.2019.03.022
  48. V.N. Chuvil'deev, M.S. Boldin, Ya.G. Dyatlova, V.I. Rumyantsev, S.S. Ordan'yan. Neogranicheskie materialy, 51, 1128 (2015) In Russian). DOI: 10.7868/S0002337X15090031
  49. Y. Li, Y. Xiong, H. Li, S. Han, F. Ren, C. Wang. Coatings, 14, 230 (2024). DOI: 10.3390/coatings14020230
  50. S. Hayata, S. Oue, H. Nakano, T. Takahashi. ISIJ Int., 55, 1083 (2015). DOI: 10.2355/isijinternational.55.1083
  51. Y. Li, Y. Xiong, J. Tang, S. Han, F. Ren, C. Wang, S. Wang. Coatings, 14, 323 (2024). DOI: 10.3390/coatings14030323
  52. S. Inomata, M. Kajihara. J. Alloy. Comp., 509, 4958 (2011). DOI: 10.1016/j.jallcom.2011.01.139

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru