Simulation of the interaction of accelerated electrons with an energy of 1-10 MeV with a radiation-protective polymer composite
Pavlenko V. I.1, Kashibadze V. V.1, Ruchii A. Yu.1, Serebryakov S. V.1, Sidelnikov R. V.1
1Belgorod State Technology University named after V.G. Shukhov, Belgorod, Russia
Email: artiem.ruchii.99@mail.ru, serebr43@yandex.ru, roman.sidelnikov@mail.ru

PDF
The use of physical and mathematical modeling allows us to study the processes that occur during the interaction of accelerated electrons with different energies and materials. We are considering a polymer composite based on fluoroplastic and tungsten carbide for use as biological protection in linear particle accelerator installations with electron energies up to 10 MeV. We have investigated the possibility of modifying the filler and synthesized a radiation-protective material. We have also studied the effect of accelerated electrons on the composite and determined its strength characteristics. Modifying the tungsten carbide powder allowed us to create a hydrophobic shell. The effective electron travel length in pure fluoroplastic at the energies of 1, 5, and 10 MeV is 3, 14, and 28 nm, respectively. The addition of 30 mass%The change in physico-mechanical properties of the synthesized materials was estimated. The addition of 30 mass% tungsten carbide to fluoroplast led to a 23.4 % decrease in bending strength and a 16.9 % increase in the two-fold filler content. The results of this work allow us to predict the behavior of composites under accelerated particle exposure and optimize their compositions to improve radiation-protective properties. Keywords: Monte Carlo model, electron radiation, linear gas pedals, radiation-protective composite, physical and mathematical modeling.
  1. Vikas, R. Sahu. Precis. Eng., 71, 232 (2021). DOI: 10.1016/j.precisioneng.2021.03.015
  2. J. Resta Lopez. Future Particle Accelerators (IntechOpen, London, 2022), DOI: 10.5772/intechopen.106340
  3. G. Haridas, R. Ravishankar, A. Chattaraj, P. Selvam. Handbook on Radiation Environment, 2, 263 (2024). DOI: 10.1007/978-981-97-2799-5_10
  4. G.N. Timoshenko. Radiatsionnaya zashchita vysokoenergitichnykh uskoritelei (OIYaI, Dubna, 2022) (in Russian)
  5. Y.P. Severgin, M.Z. Filimonov. Proceed. Intern. Conf. Particle Accelerators, 3, 2208 (1993). DOI: 10.1109/PAC.1993.309270
  6. A. Kozlovskiy, I. Kenzhina, Z.A. Alyamova, M. Zdorovets. Opt. Mater., 91, 130 (2019). DOI: 10.1016/j.optmat.2019.03.014
  7. C.V. More, Z. Alsayed, M.S. Badawi, A.A. Thabet, P.P. Pawar. Environ Chem. Lett., 19, 2057 (2021). DOI: 10.1007/s10311-021-01189-9
  8. V.I. Pavlenko, G.G. Bondarenko, V.V. Kashibadze, S.N. Domarev. Perspektivnye materialy, 7, 42 (2024) (in Russian). DOI: 10.30791/1028-978X-2024-7-42-50
  9. T. Romano, G. Pikurs, A. Ratkus, T. Torims, N. Delerue, M. Vretenar, L. Stepien, E. Lopez, M. Vedani. Phys. Rev. Accel. Beams, 27, 1 (2024). DOI: 10.1103/PhysRevAccelBeams.27.054801
  10. C. Zeng, Q. Kang, Z. Duan, B. Qin, X. Feng, H. Lu, Y. Lin. J. Inorg. Organometall. Polymers Mater., 33 (8), 2191 (2023). DOI: 10.1007/s10904-023-02725-6
  11. E. McCarthy, D. Brabazon. In: Encyclopedia of Materials: Composites, ed. by D. Brabazon (Oxford, Elsevier, 3, 2021, 263). DOI: 10.1016/B978-0-12-819724-0.00067-7
  12. A. Passarelli, M.R. Masullo, Z. Mazaheri, A. Andreone. Sensors, 24, 5036 (2024). DOI: 10.3390/s24155036
  13. A.A. Jaoude. Recent Advances in Monte Carlo Methods (IntechOpen, London, 2024), DOI: 10.5772/intechopen.1000269
  14. I.V. Verkhoturova (Gopienko), M.S. Bykovskii, A.V. Avrashenko, K.K. Tyazhelkova. Vestnik AmGU, 81, 28 (2018) (in Russian).
  15. V.A. Shuvalov, N.A. Tokmak, N.I. Pis'mennyi, G.S. Kochubei. Pribory i tekhnika eksperimenta, 4, 79 (2021) (in Russian). DOI: 10.31857/S0032816221040108
  16. V.Yu. Yurina, V.V. Neshchimenko. V sb.: Fizika: fundamental'nye i prikladnye issledovaniya, obrazovanie, pod red. A.I. Mazura (TOGU, Khabarovsk, 2022), s. 90-92 (in Russian)
  17. B.A. Kozhamkulov, Zh.M. Bitibaeva, Zh.E. Primkulova, D.E. Kuatbaeva, A.K. Dzhumadillaeva. Sci. Eur., 50-1 (50), 18 (2020) (in Russian)
  18. N.I. Cherkashina. Tech. Phys., 65 (1), 107 (2020). DOI: 10.1134/S1063784220010028
  19. A. Galuga, G. Baravov, V. Gavrish, S. Smirnov, A. Losenkov, S. Vostrognutov. Method and device for obtaining a powder from particles of tungsten or tungsten compounds with a size in the nano-, micron or submicron range (European Patent N EP3138932A1, 08.03.2017)
  20. I.Kh. Khudaykulov, J.R. Ravshanov, Kh.B. Ashurov, V.N. Arustamov, D.T. Usmanov. J. Surf. Investig: X-Ray Synchrotron Neutron Tech., 16 (4), 599 (2022). DOI: 10.1134/S1027451022040280
  21. V.I. Pavlenko, G.G. Bondarenko, N.I. Cherkashina. Inorganic Mater.: Appl. Res., 11 (2), 304 (2020). DOI: 10.1134/S2075113320020306
  22. N.I. Cherkashina, V.I. Pavlenko, A.N. Shkaplerov, A.A. Kuritsyn, R.V. Sidelnikov, E.V. Popova, L.A. Umnova, S.N. Domarev. Adv. Space Res., 73 (5), 2638 (2024). DOI: 10.1016/j.asr.2023.12.003
  23. D.S. Yurov, V.I. Shvedunov, A.S. Alimov. Moscow University Phys. Bull., 78 (1), 85 (2023). DOI: 10.55959/MSU0579-9392.78.2310501
  24. O.V. Tkhorik, V.A. Kharlamov, I.V. Polyakova, N.N. Loy, M.G. Pomyasova, V.I. Shishko. RUDN J. Agron. Anim. Ind., 18 (4), 541 (2023). DOI: 10.22363/2312-797X-2023-18-4-541-553
  25. D.F. Crawford, H. Messel. Electron-photon shower distribution function (Elsevier Science, 2013, Berlin)
  26. V.I. Bespalov. Vzaimodeistvie ioniziruyushchego izlucheniya s veshchestvom: uch. posobie (Tomskii politekh. un-t, Tomsk, 2008) (in Russian)
  27. V.I. Pavlenko, G.G. Bondarenko, N.I. Cherkashina. Perspektivnye materialy, 8, 5 (2015) (in Russian)
  28. A.V. Pavlenko, N.I. Cherkashina, R.N. Yastrebinski, A.V. Noskov. Problems Atom. Sci. Technol., 111 (5), 21 (2017)
  29. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin. Scanning, 29 (3), 92 (2007). DOI: 10.1002/sca.20000
  30. P. Hovington, D. Drouin, R. Gauvin. Scanning, 19 (1), 1 (2006). DOI: 10.1002/sca.4950190101
  31. M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang. Stopping-power and range tables for electrons, protons, and helium ions (NIST PML, Gaithersburg, 2017), DOI: 10.18434/T4NC7P
  32. N.I. Cherkashina, V.I. Pavlenko, A.V. Noskov. Radiat. Phys. Chem., 159 (1), 111 (2019). DOI: 10.1016/j.radphyschem.2019.02.041
  33. Yu.M. Samoilova. Avtoref. kand. diss. (Belgorod, BGTU im. V.G. Shukhova, 2015) (in Russian)
  34. V.V. Krayushkin, P.A. Orlenko, A.V. Larichev. Atomnaya energiya, (in Russian). 61 (3), 218 (1986)
  35. W.P. Swanson. Radiological safety aspects of the operation of electron linear accelerators international atomic energy agency (IAEA, Vienna, 1979)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru