Simulation of the interaction of accelerated electrons with an energy of 1-10 MeV with a radiation-protective polymer composite
Pavlenko V. I.1, Kashibadze V. V.1, Ruchii A. Yu.1, Serebryakov S. V.1, Sidelnikov R. V.1
1Belgorod State Technology University named after V.G. Shukhov, Belgorod, Russia
Email: artiem.ruchii.99@mail.ru, serebr43@yandex.ru, roman.sidelnikov@mail.ru
The use of physical and mathematical modeling allows us to study the processes that occur during the interaction of accelerated electrons with different energies and materials. We are considering a polymer composite based on fluoroplastic and tungsten carbide for use as biological protection in linear particle accelerator installations with electron energies up to 10 MeV. We have investigated the possibility of modifying the filler and synthesized a radiation-protective material. We have also studied the effect of accelerated electrons on the composite and determined its strength characteristics. Modifying the tungsten carbide powder allowed us to create a hydrophobic shell. The effective electron travel length in pure fluoroplastic at the energies of 1, 5, and 10 MeV is 3, 14, and 28 nm, respectively. The addition of 30 mass%The change in physico-mechanical properties of the synthesized materials was estimated. The addition of 30 mass% tungsten carbide to fluoroplast led to a 23.4 % decrease in bending strength and a 16.9 % increase in the two-fold filler content. The results of this work allow us to predict the behavior of composites under accelerated particle exposure and optimize their compositions to improve radiation-protective properties. Keywords: Monte Carlo model, electron radiation, linear gas pedals, radiation-protective composite, physical and mathematical modeling.
- Vikas, R. Sahu. Precis. Eng., 71, 232 (2021). DOI: 10.1016/j.precisioneng.2021.03.015
- J. Resta Lopez. Future Particle Accelerators (IntechOpen, London, 2022), DOI: 10.5772/intechopen.106340
- G. Haridas, R. Ravishankar, A. Chattaraj, P. Selvam. Handbook on Radiation Environment, 2, 263 (2024). DOI: 10.1007/978-981-97-2799-5_10
- G.N. Timoshenko. Radiatsionnaya zashchita vysokoenergitichnykh uskoritelei (OIYaI, Dubna, 2022) (in Russian)
- Y.P. Severgin, M.Z. Filimonov. Proceed. Intern. Conf. Particle Accelerators, 3, 2208 (1993). DOI: 10.1109/PAC.1993.309270
- A. Kozlovskiy, I. Kenzhina, Z.A. Alyamova, M. Zdorovets. Opt. Mater., 91, 130 (2019). DOI: 10.1016/j.optmat.2019.03.014
- C.V. More, Z. Alsayed, M.S. Badawi, A.A. Thabet, P.P. Pawar. Environ Chem. Lett., 19, 2057 (2021). DOI: 10.1007/s10311-021-01189-9
- V.I. Pavlenko, G.G. Bondarenko, V.V. Kashibadze, S.N. Domarev. Perspektivnye materialy, 7, 42 (2024) (in Russian). DOI: 10.30791/1028-978X-2024-7-42-50
- T. Romano, G. Pikurs, A. Ratkus, T. Torims, N. Delerue, M. Vretenar, L. Stepien, E. Lopez, M. Vedani. Phys. Rev. Accel. Beams, 27, 1 (2024). DOI: 10.1103/PhysRevAccelBeams.27.054801
- C. Zeng, Q. Kang, Z. Duan, B. Qin, X. Feng, H. Lu, Y. Lin. J. Inorg. Organometall. Polymers Mater., 33 (8), 2191 (2023). DOI: 10.1007/s10904-023-02725-6
- E. McCarthy, D. Brabazon. In: Encyclopedia of Materials: Composites, ed. by D. Brabazon (Oxford, Elsevier, 3, 2021, 263). DOI: 10.1016/B978-0-12-819724-0.00067-7
- A. Passarelli, M.R. Masullo, Z. Mazaheri, A. Andreone. Sensors, 24, 5036 (2024). DOI: 10.3390/s24155036
- A.A. Jaoude. Recent Advances in Monte Carlo Methods (IntechOpen, London, 2024), DOI: 10.5772/intechopen.1000269
- I.V. Verkhoturova (Gopienko), M.S. Bykovskii, A.V. Avrashenko, K.K. Tyazhelkova. Vestnik AmGU, 81, 28 (2018) (in Russian).
- V.A. Shuvalov, N.A. Tokmak, N.I. Pis'mennyi, G.S. Kochubei. Pribory i tekhnika eksperimenta, 4, 79 (2021) (in Russian). DOI: 10.31857/S0032816221040108
- V.Yu. Yurina, V.V. Neshchimenko. V sb.: Fizika: fundamental'nye i prikladnye issledovaniya, obrazovanie, pod red. A.I. Mazura (TOGU, Khabarovsk, 2022), s. 90-92 (in Russian)
- B.A. Kozhamkulov, Zh.M. Bitibaeva, Zh.E. Primkulova, D.E. Kuatbaeva, A.K. Dzhumadillaeva. Sci. Eur., 50-1 (50), 18 (2020) (in Russian)
- N.I. Cherkashina. Tech. Phys., 65 (1), 107 (2020). DOI: 10.1134/S1063784220010028
- A. Galuga, G. Baravov, V. Gavrish, S. Smirnov, A. Losenkov, S. Vostrognutov. Method and device for obtaining a powder from particles of tungsten or tungsten compounds with a size in the nano-, micron or submicron range (European Patent N EP3138932A1, 08.03.2017)
- I.Kh. Khudaykulov, J.R. Ravshanov, Kh.B. Ashurov, V.N. Arustamov, D.T. Usmanov. J. Surf. Investig: X-Ray Synchrotron Neutron Tech., 16 (4), 599 (2022). DOI: 10.1134/S1027451022040280
- V.I. Pavlenko, G.G. Bondarenko, N.I. Cherkashina. Inorganic Mater.: Appl. Res., 11 (2), 304 (2020). DOI: 10.1134/S2075113320020306
- N.I. Cherkashina, V.I. Pavlenko, A.N. Shkaplerov, A.A. Kuritsyn, R.V. Sidelnikov, E.V. Popova, L.A. Umnova, S.N. Domarev. Adv. Space Res., 73 (5), 2638 (2024). DOI: 10.1016/j.asr.2023.12.003
- D.S. Yurov, V.I. Shvedunov, A.S. Alimov. Moscow University Phys. Bull., 78 (1), 85 (2023). DOI: 10.55959/MSU0579-9392.78.2310501
- O.V. Tkhorik, V.A. Kharlamov, I.V. Polyakova, N.N. Loy, M.G. Pomyasova, V.I. Shishko. RUDN J. Agron. Anim. Ind., 18 (4), 541 (2023). DOI: 10.22363/2312-797X-2023-18-4-541-553
- D.F. Crawford, H. Messel. Electron-photon shower distribution function (Elsevier Science, 2013, Berlin)
- V.I. Bespalov. Vzaimodeistvie ioniziruyushchego izlucheniya s veshchestvom: uch. posobie (Tomskii politekh. un-t, Tomsk, 2008) (in Russian)
- V.I. Pavlenko, G.G. Bondarenko, N.I. Cherkashina. Perspektivnye materialy, 8, 5 (2015) (in Russian)
- A.V. Pavlenko, N.I. Cherkashina, R.N. Yastrebinski, A.V. Noskov. Problems Atom. Sci. Technol., 111 (5), 21 (2017)
- D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin. Scanning, 29 (3), 92 (2007). DOI: 10.1002/sca.20000
- P. Hovington, D. Drouin, R. Gauvin. Scanning, 19 (1), 1 (2006). DOI: 10.1002/sca.4950190101
- M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang. Stopping-power and range tables for electrons, protons, and helium ions (NIST PML, Gaithersburg, 2017), DOI: 10.18434/T4NC7P
- N.I. Cherkashina, V.I. Pavlenko, A.V. Noskov. Radiat. Phys. Chem., 159 (1), 111 (2019). DOI: 10.1016/j.radphyschem.2019.02.041
- Yu.M. Samoilova. Avtoref. kand. diss. (Belgorod, BGTU im. V.G. Shukhova, 2015) (in Russian)
- V.V. Krayushkin, P.A. Orlenko, A.V. Larichev. Atomnaya energiya, (in Russian). 61 (3), 218 (1986)
- W.P. Swanson. Radiological safety aspects of the operation of electron linear accelerators international atomic energy agency (IAEA, Vienna, 1979)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.