Determination of the proportions of platinum atoms in agglomerates of bimetallic nanoparticles using machine learning methods
Gladchenko-Djevelekis Ya. N. 1, Tolchina D. S. 1, Belenov S. V. 1, Srabionyan V. V. 1, Durymanov V. A. 1, Viklenko I. A.1, Avakyan L. A. 1, Alekseenko A. A.1, Bugaev L. A. 1
1Southern Federal University, Rostov-on-Don, Russia
Email: ygl@sfedu.ru, sbelenov@sfedu.ru, vvsrab@sfedu.ru, durymanov@sfedu.ru, viklenko@sfedu.ru, laavakyan@sfedu.ru, aalekseenko@sfedu.ru

PDF
In this paper, we consider the applicability of machine learning methods, in particular, artificial neural networks, to obtain information on the distribution of target substance atoms in aggregates of bimetallic nanoparticles of various architectures. To solve the problem, we use data on paired radial distribution functions of atoms, the direct sources of which are experimental methods of X-ray diffraction and X-ray absorption spectroscopy from an extended energy region of the spectrum. The trained model of the artificial neural network demonstrates high accuracy in determining the proportions of platinum atoms in the composition of nanoparticles of various architectures in the agglomerate (determination coefficient ~ 0.98). To verify the trained model, experimental data for catalysts containing bimetallic PtCu nanoparticles were used. Verification showed a high generalisability of the model, which indicates the promising application of this approach to the determination of platinum consumption efficiency in the synthesis of platinum-containing nanoparticle-based catalysts. Keywords: Core shell nanoparticles, gradient nanoparticles, RDF, EXAFS, artificial neural networks, CatBoost.
  1. K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto. Nat. Nanotechnol., 16 (2), 140 (2021). DOI: 10.1038/s41565-020-00824-w
  2. A.A. Alekseenko, A.S. Pavlets, S.V. Belenov, O.I. Safronenko, I.V. Pankov, V.E. Guterman. Appl. Surf. Sci., 595, 153533 (2022). DOI: 10.1016/j.apsusc.2022.153533
  3. S. Hussain, H. Erikson, N. Kongi, A. Sarapuu, J. Solla-Gullon, G. Maia, A.M. Kannan, N. Alonso-Vante, K. Tammeveski. Int. J. Hydrogen Energy, 45 (56), 31775 (2020). DOI: 10.1016/j.ijhydene.2020.08.215
  4. A. Hrnjic, A.R. Kamvsek, A. Pavlivsivc, M. vSala, M. Bele, L. Moriau, M. Gatalo, F. Ruiz-Zepeda, P. Jovanovivc, N. Hodnik. Electrochim. Acta, 388, 138513 (2021). DOI: 10.1016/j.electacta.2021.138513
  5. S. Zaman, L. Huang, A.I. Douka, H. Yang, B. You, B.Y. Xia. Angew. Chemie Int. Ed., 60 (33), 17832 (2021). DOI: 10.1002/anie.202016977
  6. M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz. Chem. Rev., 116 (6), 3594 (2016). DOI: 10.1021/acs.chemrev.5b00462
  7. W. Yan, D. Zhang, Q. Zhang, Y. Sun, S. Zhang, F. Du, X. Jin. J. Energy Chem., 64, 583 (2022). DOI: 10.1016/j.jechem.2021.05.003
  8. M. Heinz, V.V. Srabionyan, L.A. Avakyan, A.L. Bugaev, A.V. Skidanenko, S.Y. Kaptelinin, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, L.A. Bugaev. J. Alloys Compd., 767, 1253 (2018). DOI: 10.1016/j.jallcom.2018.07.183
  9. S. Belenov, A. Alekseenko, A. Pavlets, A. Nevelskaya, M. Danilenko. Catalysts, 12 (6), 638 (2022). DOI: 10.3390/catal12060638
  10. A.A. Alekseenko, V.E. Guterman, S.V. Belenov, V.S. Menshikov, N.Y. Tabachkova, O.I. Safronenko, E.A. Moguchikh. Int. J. Hydrogen Energy, 43 (7), 3676 (2018). DOI: 10.1016/j.ijhydene.2017.12.143
  11. S.V. Belenov, V.E. Guterman, N.Y. Tabachkova, E.A. Moguchikh, A.A. Alekseenko, V.A. Volochaev, N.M. Novikovskiy. Russ. J. Electrochem., 54 (12), 1209 (2018). DOI: 10.1134/S1023193518130062
  12. K. Boldt, S. Bartlett, N. Kirkwood, B. Johannessen. Nano Lett., 20 (2), 1009 (2020). DOI: 10.1021/acs.nanolett.9b04143
  13. X. Lyu, Y. Jia, X. Mao, D. Li, G. Li, L. Zhuang, X. Wang, D. Yang, Q. Wang, A. Du, X. Yao. Adv. Mater., 32 (32), 2003493 (2020). DOI: 10.1002/adma.202003493
  14. S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh. Nanoscale, 10 (27), 12871 (2018). DOI: 10.1039/C8NR02278J
  15. L.J. Moriau, A. Hrnjic, A. Pavlivsivs, A.R. Kamvsek, U. Petek, F. Ruiz-Zepeda, M. vSala, L. Pavko, V.S. vSelih, M. Bele, P. Jovanovivc, M. Gatalo, N. Hodnik. IScience, 24 (2), 102102 (2021). DOI: 10.1016/j.isci.2021.102102
  16. J. Timoshenko, D. Lu, Y. Lin, A.I. Frenkel. J. Phys. Chem. Lett., 8 (20), 5091 (2017). DOI: 10.1021/acs.jpclett.7b02364
  17. J. Timoshenko, A.I. Frenkel. ACS Catal., 9 (11), 10192 (2019). DOI: 10.1021/acscatal.9b03599
  18. L. Avakyan, D. Tolchina, V. Barkovski, S. Belenov, A. Alekseenko, A. Shaginyan, V. Srabionyan, V. Guterman, L. Bugaev. Comput. Mater. Sci., 208, 111326 (2022). DOI: 10.1016/j.commatsci.2022.111326
  19. E. Collet, M. Buron, H. Cailleau, M. Lorenc, M. Servol, P. Rabiller, B. Toudic. X-ray diffraction for material science, in: UVX 2008-9e Colloq. Sur Les Sources Coherentes Incoherentes UV, VUV X Appl. Developpements Recents, EDP Sciences, Les Ulis, France, 2009, p. 21. DOI: 10.1051/uvx/2009005
  20. L.A. Bugaev, L.A. Avakyan, V. V. Srabionyan, A.L. Bugaev. Phys. Rev. B, 82 (6), 064204 (2010). DOI: 10.1103/PhysRevB.82.064204
  21. D.C. Koningsberger, B.L. Mojet, G.E. van Dorssen, D.E. Ramaker. Top. Catal., 10 (3/4), 143 (2000). DOI: 10.1023/A:1019105310221
  22. J.A. van Bokhoven, C. Lamberti. X-Ray Absorption and X-Ray Emission Spectroscopy (John Wiley \& Sons, Ltd, Chichester, UK, 2016), DOI: 10.1002/9781118844243
  23. R. Wang, H. Wang, F. Luo, S. Liao. Electrochem. Energy Rev., 1 (3), 324 (2018). DOI: 10.1007/s41918-018-0013-0
  24. V.V. Kitov. Stat. Econ., 4, 22 (2016). DOI: 10.21686/2500-3925-2016-4-22-26
  25. L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin. (2017). http://arxiv.org/abs/1706.09516
  26. Electronic source. Available at: https://catboost.ai/en/docs/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru