Electrophysical properties of different types of shungite rocks
Moshnikov I. A. 1, Kovalevski V. V. 1
1Institute of Geology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
Email: kovalevs@krc.karelia.ru

PDF
Two types of shungite rocks with different chemical and mineralogical compositions, initial and modified, were studied. During heat treatment, nanoscale hollow carbon structures, fibrous silicon carbides, micro-sized iron silicide particles, and glassy microspheres were formed in the modified samples. The electrical conductivity of these samples at temperatures between 77 and 300 K and shielding effectiveness at frequencies from 100 kHz to 1 GHz were measured. The initial and modified samples exhibited a semiconductor type of conductivity, with activation energies ranging from 0.0007 to 0.0086 eV. The electrical conductivity and shielding effectiveness of the modified shungite samples can increase or decrease depending on the type and composition of the rock. Keywords: Shungite rock, heat treatment, electron microscopy, Raman spectroscopy, electrical conductivity, shielding effectiveness.
  1. V.V. Kovalevski, A.V. Prikhodko, P.R. Buseck. Carbon, 43 (2), 401 (2005). DOI: 10.1016/j.carbon.2004.09.030
  2. M.A. Augustyniak-Jablokow, Y.V. Yablokov, B. Andrzejewski, W. Kempinski, S. Los, K. Tadyszak, M.Y. Yablokov, V.A. Zhikharev. Phys. Chem. Minerals, 37 (4), 237 (2010). DOI: 10.1007/s00269-009-0328-9
  3. Yu.E. Deines, V.V. Kovalevskii, I.V. Kochneva, I.A. Moshnikov, V.S. Rozhkova, Tr. KarNTs, 2, 84 (2020) (in Russian). DOI: 10.17076/geo1187
  4. I.A. Moshnikov, V.V. Kovalevski, Yu.A. Markovskii. Fullerenes, Nanotubes and Carbon Nanostructures, 30 (1), 1 (2021). DOI: 10.1080/1536383X.2021.1998004
  5. V.V. Kovalevski, I.V. Kochneva, V.S. Rozhkova. Inorganic Mater., 59 (7), 736 (2023). DOI: 10.1134/s0020168523070099
  6. S.V. Kovalevskii, I.A. Moshnikov, V.V. Kovalevski. Nanosyst.: Phys. Chem. Math., 9 (4), 468 (2018). DOI: 10.17586/2220-8054-2018-9-4-468-472
  7. G.V. Simbirtseva, N.P. Piven', S.D. Babenko. Russ. J. Phys. Chem. B, 14 (6), 980 (2020). DOI: 10.1134/S1990793120060287.
  8. S.P. Belyaev, S.K. Gordeev, V.A. Chekanov, I.V. Golosovsky, S.K. Gordeev, S.B. Korchagina, I.A. Denisov, P.I. Belobrov. Physics Solid State, 56 (1), 152 (2014). DOI: 10.1134/S1063783414010028
  9. H. Akbari, Sh. Taeb, A. Adibzadeh, H. Akbari. J. Biomed. Phys. Eng., 13 (4), 299 (2023). DOI: 10.31661/jbpe.v0i0.2010-1203
  10. S. Kumar, P.P. Pathak. Int. J. Innov. Sci. Res. Technol., 9 (3), 2008 (2024). DOI: 10.38124/ijisrt/IJISRT24MAR1491
  11. M.F. Elmahaishi, R.S. Azis, I. Ismail, F.D. Muhammad. J. Mater. Res. Techn., 20, 2188 (2022). DOI: 10.1016/j.jmrt.2022.07.140
  12. E.I. Terukov, A.A. Babaev, A.G. Tkachev, D.V. Zhilina. Tech. Phys., 63 (7), 1044 (2018). DOI: 10.1134/S1063784218070289
  13. E.A. Golubev. Physics Solid State, 55 (5), 1078 (2013). DOI: 10.1134/S1063783413050107
  14. Yu.V. Samukhina, G.M. Nikoladze, T.A. Kulkova, A.K. Buryak. Russ. J. Phys. Chem. A, 97 (2), 373 (2023). DOI: 10.1134/S0036024423020231
  15. V.P. Podolsky, V.V. Volkov, O.B. Kukina, A.V. Andreev. Russ. J. Building Construction and Architecture, 3 (55), 7 (2022). DOI: 10.36622/VSTU.2022.55.3.007
  16. I.A. Moshnikov, V.V. Kovalevski. Nanosyst.: Phys. Chem. Math., 7 (1), 214 (2016). DOI: 10.17586/2220-8054-2016-7-1-214-219
  17. S.Y. Chazhengina, V.V. Kovalevski. Eur. J. Mineral, 25, 835 (2013). DOI: 10.1127/0935-1221/2013/0025-2327
  18. S.A. Lyashchenko, Z.I. Popov, S.N. Varnakov, E.A. Popov, M.S. Molokeev, I.A. Yakovlev, A.A. Kuzubov, S.G. Ovchinnikov, T.S. Shamirzaev, A.V. Latyshev, A. Saranin. J. Exp. Theor. Phys., 120 (5), 886 (2015). DOI: 10.1134/S1063776115050155
  19. B. Zhang, Q. Jing, Sh. Yan, J. Guo, W. Liu, Ch. Sun, Z. Wang. Carbon, 218 (1), 118727 (2024). DOI: 10.1016/j.carbon.2023.118727
  20. N. Larouche, B.L. Stansfield. Carbon, 48 (3), 620 (2010). DOI: 10.1016/j.carbon.2009.10.002
  21. B.L.H. Azari, T. Wicaksono, J.F. Damayanti, D.F.H. Azari. Comput. Exp. Res. Mater. Renewable Energy (CERiMRE), 4 (2), 71 (2021). DOI: 10.19184/cerimre.v4i2.28371
  22. N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)
  23. E.A. Golubev, I.V. Antonets, R.I. Korolev. FTT, 65 (12), 2111 (2023) (in Russian). DOI: 10.61011/FTT.2023.12.56735.5136k
  24. A.A. Grebennikov, V.S. Zheleznyi, Yu.E. Kalinin, V.A. Makagonov, O.N. Pevchenko. Vestnik Voronezhskogo gos. tekh. un-ta, 9 (6-1), 77 (2013) (in Russian)
  25. D.D.L. Chung. Carbon, 39 (2), 279 (2001). DOI: 10.1016/S0008-6223(00)00184-6
  26. A. Xie, B. Zhang, Y. Ge, X. Wang, P. Xu, Zh. Feng, Y. Maozhong, Zh. Zhe. J. Mater. Res. Tech., 25, 4833 (2023). DOI: 10.1016/j.jmrt.2023.06.132

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru