Femtosecond laser synthesis of spherical nanoparticles of molybdenum disulfide and molybdenum oxide for photothermal therapy
Chernikov A. S. 1, Kochuev D. A. 1, Chkalov R. V. 1, Dzus M. A.1, Khorkov K. S. 1
1Stoletovs Vladimir state university, Vladimir, Russia
Email: an4ny.che@gmail.com, _b_@mail.ru, j.larenax@gmail.com, dzus00@mail.ru, khorkov@vlsu.ru

PDF
The paper presents the results of femtosecond laser ablation and fragmentation of molybdenum disulfide and molybdenum oxide nanoparticles in ethanol and acetone. The photosensitized nanoparticles obtained were studied using scanning electron microscopy and Raman spectroscopy. The average size of nanoparticles after laser ablation was about 36 nm and 57 nm in ethanol and acetone, respectively. Laser fragmentation has made it possible to reduce the average size of nanoparticles in an ethanol solution to 20 nm, while sedimentation and oxidation of ablated nanoparticles are observed. Optical density spectra of solutions of MoO3-x and MoS2 nanoparticles in ethanol and graphs of the dependence of temperature changes on irradiation time and transmitted radiation power on time are presented. Keywords: laser ablation, laser fragmentation, molybdenum disulfide, photosensitized nanoparticles, hyperthermia, photothermal response.
  1. A. Abareshi, N. Salehi. J. Mater. Sci: Mater. Electron., 33, 25153 (2022). DOI: 10.1007/s10854-022-09220-7
  2. A.B. Bucharskaya, N.G. Khlebtsov, B.N. Khlebtsov, G.N. Maslyakova, N.A. Navolokin, V.D. Genin, E.A. Genina, V.V. Tuchin. Materials, 15 (4), 1606 (2022). DOI: 10.3390/ma15041606
  3. Y. Bayazitoglu, S. Kheradmand, T.K. Tullius. Int. J. Heat Mass Transf., 67, 469 (2013). DOI: 10.1016/j.ijheatmasstransfer.2013.08.018
  4. J. Wang, L. Sui, J. Huang, L. Miao, Y. Nie, K. Wang, Z. Yang, Q. Huang, X. Gong, Y. Nan, K. Ai. Bioact. Mater., 6 (11), 4209 (2021). DOI: 10.1016/j.bioactmat.2021.04.021
  5. K. Bazaka, I. Levchenko, J.W.M. Lim, O. Baranov, C. Corbella, S. Xu, M. Keidar. J. Phys. D: Appl. Phys., 52 (18), 183001 (2019). DOI: 10.1088/1361-6463/ab03b3
  6. L. Ding, Y. Chang, P. Yang, W. Gao, M. Sun, Y. Bie, L. Yang, X. Ma, Y. Guo. Mater. Sci. Eng. C, 117, 111371 (2020). DOI: 10.1016/j.msec.2020.111371
  7. U.E. Kurilova, A.S. Chernikov, D.A. Kochuev, L.S. Volkova, A.A. Voznesenskaya, R.V. Chkalov, D.V. Abramov, A.V. Kazak, I.A. Suetina, M.V. Mezentseva, L.I. Russu, A.Yu. Gerasimenko, K.S. Khorkov. J. Biomed. Photonics Eng., 9 (2), 020301 (2023). DOI: 10.18287/JBPE23.09.020301
  8. U.E. Kurilova, A.S. Chernikov, D.A. Kochuev, L.S. Volkova, A.A. Voznesenskaya, R.V. Chkalov, D.V. Abramov, A.V. Kazak, I.A. Suetina, M.V. Mezentseva, L.I. Russu, A.Yu. Gerasimenko, K.S. Khor'kov. Biomed. Eng., 58, 106 (2024). DOI: 10.1007/s10527-024-10376-1
  9. C.L. Lai, R. Karmakar, Y.M. Tsao, S.C. Lu, A. Mukundan, P.H. Liu, H.C. Wang. Opt. Mater. Express, 14 (8), 2003 (2024). DOI: 10.1364/OME.528709
  10. Q. Li, J.T. Newberg, E.C. Walter, J.C. Hemminger, R.M. Penner. Nano Lett., 4 (2), 277 (2004). DOI: 10.1021/nl035011f
  11. U. Krishnan, M. Kaur, K. Singh, M. Kumar, A. Kumar. Superlattice. Microst., 128, 274 (2019). DOI: 10.1016/j.spmi.2019.02.005
  12. A.S. Chernikov, G.I. Tselikov, M.Yu. Gubin, A.V. Shesterikov, K.S. Khorkov, A.V. Syuy, G.A. Ermolaev, I.S. Kazantsev, R.I. Romanov, A.M. Markeev, A.A. Popov, G.V. Tikhonowski, O.O. Kapitanova, D.A. Kochuev, A.Yu. Leksin, D.I. Tselikov, A.V. Arsenin, A.V. Kabashin, V.S. Volkov, A.V. Prokhorov. J. Mater. Chem. C, 11 (10), 3493 (2023). https://doi.org/10.1039/D2TC05235K
  13. G.I. Tselikov, D.A. Panova, I.S. Kazantsev, A.V. Syuy, G.V. Tikhonowski, A.A. Popov, A.V. Arsenin, V.S. Volkov. Bull. Russ. Acad. Sci. Phys., 86 (Suppl 1), S234 (2022). DOI: 10.3103/S1062873822700745
  14. B. Guo, J. Sun, Y. Hua, N. Zhan, J. Jia, K. Chu, Nanomanuf. Metrol., 3, 26 (2020). DOI: 10.1007/s41871-020-00056-5
  15. A.A. Ionin, S.I. Kudryashov, A.A. Samokhin. Phys. Usp., 60, 149 (2017). DOI: 10.3367/UFNe.2016.09.037974
  16. G. Bongiovanni, P.K. Olshin, C. Yan, J.M. Voss, M. Drabbels, U.J. Lorenz. Nanoscale Adv., 3 (18), 5277 (2021). DOI: 10.1039/D1NA00406A
  17. R. Fang, A. Vorobyev, C. Guo. Light Sci. Appl., 6, e16256 (2017). DOI: 10.1038/lsa.2016.256
  18. A.V. Kharkova, A.A. Voznesenskaya, D.A. Kochuev, K.S. Khorkov. Bull. Russ. Acad. Sci.: Phys., 86(6), 726 (2022). DOI: 10.3103/S1062873822060156
  19. F. Ye, D. Chang, A. Ayub, K. Ibrahim, A. Shahin, R. Karimi, S.Wettig, J. Sanderson, K.P. Musselman. Chem. Mater., 33 (12), 4510 (2021). DOI: 10.1021/acs.chemmater.1c00732
  20. J. G. Castillo-Lara, N. Zamora-Romero, K. Isaac-Oliv e, N.P. Jimenez-Mancilla, L. Aranda-Lara, S. Camacho-Lopez, M. Camacho-Lopez,, A.R. Vilchis-Nestor, M.A. Camacho-Lopez. Mater. Lett., 388, 138300 (2025). DOI: 10.1016/j.matlet.2025.138300

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru