Effect of proton irradiation on the structure and properties of ZrO2 powders and ceramics
Belichko D.R.1, Volkova G.K.1, Maletckii A.V. 1,2, Isaev RSh.2, Yakimenko M.N.1, Zozulia A. A.1
1Donetsk Institute for Physics and Engineering named after A.A. Galkin, Donetsk, Russia
2Joint Institute for Nuclear Research, Dubna, Moscow oblast, Russia
Email: danil.belichko@yandex.ru

PDF
The results of a study of the effects of proton irradiation with an energy of E_p= 2 MeV and a dose of D_p= 1· 10-17 ion/cm2 on oxide powders of the composition ZrO_2 + n % Y2O3 (where n=2, 3, 4, 8 mol%) are presented. X-ray phase analysis revealed radiation-induced monoclinic-tetragonal transformation in compacts containing partially stabilized zirconium dioxide after irradiation with a proton stream. X-ray diffraction analysis revealed a change in the half-width of diffraction reflections in the compact structure of all the phases studied, regardless of the type of their crystalline structure. grids. The Brunauer-Emmett-Teller method, scanning electron microscopy, and dilatometry revealed an increase in the size of ZrO2 particles during proton flux irradiation. It has also been established that an increase and an increase in porosity in the material is observed during irradiation. Keywords: zirconia, nanopowders, ceramics, proton flux, irradiation.
  1. A.M. Abd El-Hameed. NRIAG J. Astronomy Geophys., 11 (1), 313 (2022). DOI: 10.1080/20909977.2022.2079902
  2. F. Garci a Ferr'e, A. Mairov, L. Ceseracciu, Y. Serruys, P. Trocellier, C. Baumier, O. Kai tasov, R. Brescia, D. Gastaldi, P. Vena, M.G. Beghi, L. Beck, K. Sridharan, F. Di Fonzo. Sci. Rep., 6, 33478 (2016). https://doi.org/10.1038/srep33478
  3. R. Devanathan, K.E. Sickafus, W.J. Weber, M. Nastasi. J. Nucl. Mater., 253 (1-3), 113 (1998). https://doi.org/10.1016/S0022-3115(97)00307-3
  4. J. Chai, Y. Zhu, L. Niu, T. Shen, M. Cui, Z. Wang. Ceram. Int., 49 (20), 32799 (2023). https://doi.org/10.1016/j.ceramint.2023.07.249
  5. A.A. Dmitrievsky, D.G. Zhigacheva, N.Y. Yefremov, P.N. Ovchinnikov, V.M. Vasyukov. Solid State Physics, 64 (8), 1018 (2022). DOI: 0.21883/FTT.2022.08.52700.355
  6. A.A. Leonov, E.V. Abdulmenova, M.P. Kalashnikov, Li Jing. Mater. Sci. Issues, 4 (104), 132 (2020). DOI: 10.22349/1994-6716-2020-104-4-132-143
  7. J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke. J. American Ceramic Society, 92 (9), 1901 (2009). DOI: 10.1111/j.1551-2916.2009.03278.x
  8. D.R. Belichko, T.E. Konstantinova, G.K. Volkova, M.N. Mirzayev, A.V. Maletsky, V.V. Burkhovetskiy, A.S. Doroshkevych, C. Mita, D.M. Mardare, B. Janiska, Asif Nabiyev, A.I. Lyubchyk, A.A. Tatarinova, E. Popov. Mater. Chem. Phys., 287 (1), 126237 (2022). DOI: 10.1016/j.matchemphys.2022.126237
  9. D.R. Belichko, T.E. Konstantinova, A.V. Maletsky, G.K. Volkova, A.S. Doroshkevych, M.V. Lacusta, M. Kulik, A.A. Tatarinova, D. Mardare, C. Mita, N. Cornei. Ceram. Intern., 47 (3), 3142 (2021). DOI: 10.1016/j.ceramint.2020.09.151
  10. V. Ivanov, S. Shkerin, A. Rempel, V. Khrustov, A. Lipilin, A. Nikonov. J. Nanosci. Nanotechnol., 10 (11), 7411-5 (2010). DOI: 10.1166/jnn.2010.2836. PMID: 21137947
  11. D.R. Belichko, G.K. Volkova, T.E. Konstantinova, A.V. Maletsky. FTVD, 33 (2), 1 (2023)
  12. N. Takahashi, A. Suda, I. Hachisuka, M. Sugiura, H. Sobukawa, H. Shinjoh. Appl. Catalysis B: Environmental, 72 (1-2), 187 (2007). DOI: 10.1016/j.apcatb.2006.10.014
  13. G. Pu, J. Zou, L. Lin, K. Zhang, B. Liu, F. Ma, Q. Wang, Q. Li. J. Alloys Compounds, 18 (771), 13150 (2018). DOI: 10.1016/j.jallcom.2018.08.259
  14. J. Liua, A.H. Mir, G. He, M. Danaie, J. Hinks, S. Donnelly, H. Nordin, S. Lozano-Perez, C.R.M. Grovenor. Acta Mater., 199, 429, (2020). https://doi.org/10.1016/j.actamat.2020.08.064
  15. F. Lu, J. Zhang, A. Navrotsky, R.C. Ewing, J. Lian. Microscopy Society of America, 16 (2), 1624 (2010). DOI: 10.1017/S1431927610062069
  16. A.V. Maletskyi, G.K. Volkova, D.R. Belichko, V.A. Glazunova, A.S. Doroshkevych, A.A. Tatarinova, S.I. Lyubchyk. Ceram. Intern., 50 (22), 46506 (2024). DOI: 10.1016/j.ceramint.2024.09.002
  17. M. Lakusta, I. Danilenko, T. Konstantinova, G.Volkova. Nanoscale Res. Lett., 11 (1), 11671 (2016). DOI: 10.1186/s11671-016-1452-3
  18. V.N. Strekalovskii. Oksidy s primesnoi razuporyadochennost'yu. Sostav, struktura, phasovye prevrashcheniya (Nauka, M., 1987), s. 158 (in Russian)
  19. V.V. Uglov. Radiatsionnye protsessy i yavleniya v tverdykh telakh (Vysheishaya shkola, Minsk, 2016), s. 188 (in Russian)
  20. B.K. Vainshtein. Sovremennaya kristallografiya (Nauka, M., 1979), t. 2, s. 384 (in Russian).
  21. D.O. Julian, L. Adrian, T. Alejandro, P.H. Juan. Dyna, 81 (185), 13 (2014). https://www.redalyc.org/articulo.oa?id=49631031002
  22. A.I.Gusev. Nanomaterialy, nanostruktury, nanotekhnologii (Fizmatlit, M.,2005), s. 416 (in Russian)
  23. D.R. Belichko, G.K. Volkova, A.V. Maletsky, I.Sh. Isaev, Mater. Sci. Issues, 3 (119), 46 (2024). https://doi.org/10.22349/1994-6716-2024-119-3-46-56
  24. I. Danilenko, M. Lakusta, L. Loladze, G. Volkova, I. Popov, V. Glazunova, T. Konstantinova. Results in Physics, 19, 103495 (2020). https://doi.org/10.1016/j.rinp.2020.103495

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru