Belichko D.R.1, Volkova G.K.1, Maletckii A.V. 1,2, Isaev RSh.2, Yakimenko M.N.1, Zozulia A. A.1
1Donetsk Institute for Physics and Engineering named after A.A. Galkin, Donetsk, Russia
2Joint Institute for Nuclear Research, Dubna, Moscow oblast, Russia
Email: danil.belichko@yandex.ru
The results of a study of the effects of proton irradiation with an energy of E_p= 2 MeV and a dose of D_p= 1· 10-17 ion/cm2 on oxide powders of the composition ZrO_2 + n % Y2O3 (where n=2, 3, 4, 8 mol%) are presented. X-ray phase analysis revealed radiation-induced monoclinic-tetragonal transformation in compacts containing partially stabilized zirconium dioxide after irradiation with a proton stream. X-ray diffraction analysis revealed a change in the half-width of diffraction reflections in the compact structure of all the phases studied, regardless of the type of their crystalline structure. grids. The Brunauer-Emmett-Teller method, scanning electron microscopy, and dilatometry revealed an increase in the size of ZrO2 particles during proton flux irradiation. It has also been established that an increase and an increase in porosity in the material is observed during irradiation. Keywords: zirconia, nanopowders, ceramics, proton flux, irradiation.
- A.M. Abd El-Hameed. NRIAG J. Astronomy Geophys., 11 (1), 313 (2022). DOI: 10.1080/20909977.2022.2079902
- F. Garci a Ferr'e, A. Mairov, L. Ceseracciu, Y. Serruys, P. Trocellier, C. Baumier, O. Kai tasov, R. Brescia, D. Gastaldi, P. Vena, M.G. Beghi, L. Beck, K. Sridharan, F. Di Fonzo. Sci. Rep., 6, 33478 (2016). https://doi.org/10.1038/srep33478
- R. Devanathan, K.E. Sickafus, W.J. Weber, M. Nastasi. J. Nucl. Mater., 253 (1-3), 113 (1998). https://doi.org/10.1016/S0022-3115(97)00307-3
- J. Chai, Y. Zhu, L. Niu, T. Shen, M. Cui, Z. Wang. Ceram. Int., 49 (20), 32799 (2023). https://doi.org/10.1016/j.ceramint.2023.07.249
- A.A. Dmitrievsky, D.G. Zhigacheva, N.Y. Yefremov, P.N. Ovchinnikov, V.M. Vasyukov. Solid State Physics, 64 (8), 1018 (2022). DOI: 0.21883/FTT.2022.08.52700.355
- A.A. Leonov, E.V. Abdulmenova, M.P. Kalashnikov, Li Jing. Mater. Sci. Issues, 4 (104), 132 (2020). DOI: 10.22349/1994-6716-2020-104-4-132-143
- J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke. J. American Ceramic Society, 92 (9), 1901 (2009). DOI: 10.1111/j.1551-2916.2009.03278.x
- D.R. Belichko, T.E. Konstantinova, G.K. Volkova, M.N. Mirzayev, A.V. Maletsky, V.V. Burkhovetskiy, A.S. Doroshkevych, C. Mita, D.M. Mardare, B. Janiska, Asif Nabiyev, A.I. Lyubchyk, A.A. Tatarinova, E. Popov. Mater. Chem. Phys., 287 (1), 126237 (2022). DOI: 10.1016/j.matchemphys.2022.126237
- D.R. Belichko, T.E. Konstantinova, A.V. Maletsky, G.K. Volkova, A.S. Doroshkevych, M.V. Lacusta, M. Kulik, A.A. Tatarinova, D. Mardare, C. Mita, N. Cornei. Ceram. Intern., 47 (3), 3142 (2021). DOI: 10.1016/j.ceramint.2020.09.151
- V. Ivanov, S. Shkerin, A. Rempel, V. Khrustov, A. Lipilin, A. Nikonov. J. Nanosci. Nanotechnol., 10 (11), 7411-5 (2010). DOI: 10.1166/jnn.2010.2836. PMID: 21137947
- D.R. Belichko, G.K. Volkova, T.E. Konstantinova, A.V. Maletsky. FTVD, 33 (2), 1 (2023)
- N. Takahashi, A. Suda, I. Hachisuka, M. Sugiura, H. Sobukawa, H. Shinjoh. Appl. Catalysis B: Environmental, 72 (1-2), 187 (2007). DOI: 10.1016/j.apcatb.2006.10.014
- G. Pu, J. Zou, L. Lin, K. Zhang, B. Liu, F. Ma, Q. Wang, Q. Li. J. Alloys Compounds, 18 (771), 13150 (2018). DOI: 10.1016/j.jallcom.2018.08.259
- J. Liua, A.H. Mir, G. He, M. Danaie, J. Hinks, S. Donnelly, H. Nordin, S. Lozano-Perez, C.R.M. Grovenor. Acta Mater., 199, 429, (2020). https://doi.org/10.1016/j.actamat.2020.08.064
- F. Lu, J. Zhang, A. Navrotsky, R.C. Ewing, J. Lian. Microscopy Society of America, 16 (2), 1624 (2010). DOI: 10.1017/S1431927610062069
- A.V. Maletskyi, G.K. Volkova, D.R. Belichko, V.A. Glazunova, A.S. Doroshkevych, A.A. Tatarinova, S.I. Lyubchyk. Ceram. Intern., 50 (22), 46506 (2024). DOI: 10.1016/j.ceramint.2024.09.002
- M. Lakusta, I. Danilenko, T. Konstantinova, G.Volkova. Nanoscale Res. Lett., 11 (1), 11671 (2016). DOI: 10.1186/s11671-016-1452-3
- V.N. Strekalovskii. Oksidy s primesnoi razuporyadochennost'yu. Sostav, struktura, phasovye prevrashcheniya (Nauka, M., 1987), s. 158 (in Russian)
- V.V. Uglov. Radiatsionnye protsessy i yavleniya v tverdykh telakh (Vysheishaya shkola, Minsk, 2016), s. 188 (in Russian)
- B.K. Vainshtein. Sovremennaya kristallografiya (Nauka, M., 1979), t. 2, s. 384 (in Russian).
- D.O. Julian, L. Adrian, T. Alejandro, P.H. Juan. Dyna, 81 (185), 13 (2014). https://www.redalyc.org/articulo.oa?id=49631031002
- A.I.Gusev. Nanomaterialy, nanostruktury, nanotekhnologii (Fizmatlit, M.,2005), s. 416 (in Russian)
- D.R. Belichko, G.K. Volkova, A.V. Maletsky, I.Sh. Isaev, Mater. Sci. Issues, 3 (119), 46 (2024). https://doi.org/10.22349/1994-6716-2024-119-3-46-56
- I. Danilenko, M. Lakusta, L. Loladze, G. Volkova, I. Popov, V. Glazunova, T. Konstantinova. Results in Physics, 19, 103495 (2020). https://doi.org/10.1016/j.rinp.2020.103495
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.