Influence of oxygen vacancy concentration on the resistive switching parameters of ZrO2(Y)-based memristor structures
Kruglov A. V. 1, Serov D. A. 1, A.I. Belov1, Koryazhkina M. N.1, I.N. Antonov1, S.Yu. Zubkov1, Kriukov R.N. 1, D.A. Antonov1, D.O. Filatov1, Khabibulova V. A.1, Mikhaylov A. N. 1, Gorshkov O.N. 1
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: krualex@yandex.ru, serow.dim2015@yandex.ru, mahavenok@mail.ru, mian@nifti.unn.ru, gorshkov@nifti.unn.ru

PDF
The effect of oxygen vacancy concentration on the parameters of resistive switching in the memristors based on yttria stabilized zirconia ZrO2(Y) was studied. The concentration of oxygen vacancies inside the ZrO2(Y) film and in the region of resistive switching (metal/dielectric interface) varied by changing the doping impurity concentration (8 or 12 mol.% Y2O3) as well as by changing the oxygen exchange conditions by using different active electrode materials having different oxidation properties (Ta, W, or Ru). X-ray photoelectron spectroscopy and conductive atomic force microscopy have revealed the presence of a region saturated with oxygen vacancies and the formation of conductive channels during the manufacture of the memristor stacks that makes it possible to create the memristors, which do not require forming. Electrical measurements have shown that the stacks based on ZrO2(Y) films with the Y2O3 concentration of 8 mol.% demonstrated gradual resistive switching, smaller current state spread, and may be interesting for neuromorphic applications. The stacks with Ta and W electrodes demonstrated similar resistive switching parameters and good CMOS integration capabilities, while the stacks with Ru electrodes demonstrated the parameters incompatible with CMOS requirements. Keywords: memristor, resistive memory, resistive switching, filament, current-voltage curve, electroforming, yttria-stabilized zirconia.
  1. A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov, O.A. Telminov, V.B. Kazantsev. Supercomp. Frontiers and Innovations, 10 (2), 77 (2023). DOI: 10.14529/jsfi230206
  2. X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun, G. Zhou, Z. Wu, F. Ren, B. Sun. Adv. Mater., 36 (14), 2310704 (2024). DOI: 10.1002/adma.202310704
  3. M. Lanza, R. Waser, D. Ielmini, J.J. Yang, L. Goux, J. Sune, A.J. Kenyon, A. Mehonic, S. Spiga, V. Rana, S. Wiefels, S. Menzel, I. Valov, M.A. Villena, E. Miranda, X. Jing, F. Campabadal, M.B. Gonzalez, F. Aguirre, F. Palumbo, K. Zhu, J.B. Roldan, F.M. Puglisi, L. Larcher, T.-H. Hou, T. Prodromakis, Y. Yang, P. Huang, T. Wan, Y. Chai, K.L. Pey, N. Raghavan, S. Duenas, T. Wang, Q. Xia, S. Pazos. ACS Nano, 15 (11), 17214 (2021). DOI: 10.1021/acsnano.1c06980
  4. O. Kapur, D. Guo, J. Reynolds, D. Newbrook, Y. Han, R. Beanland, L. Jiang, C.H. Kees de Groot, R. Huang. Sci. Reports, 14, 14008 (2024). DOI:10.1038/s41598-024-64499-2
  5. F. Cai, J.M. Correll, S.H. Lee, Y. Lim, V. Bothra, Z. Zhang, M.P. Flynn, W.D. Lu. Nature Electron., 2, 290 (2019). DOI: 10.1038/s41928-019-0270-x
  6. M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang, H. Liu, H.-Y. Chen, R. Midya, F. Ye, H. Jiang, Z. Wang, M. Wu, M. Hu, H. Wang, Q. Xia, N. Ge, J. Li, J.J. Yang. Nature, 615, 823 (2023). DOI: 10.1038/s41586-023-05759-5
  7. J.S. Lee, S. Lee, T.W. Noh. Appl. Phys. Rev., 2 (3), 031303 (2015). DOI: 10.1063/1.4929512
  8. B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou. Nanotechnol. Rev., 5 (3), 311 (2016). DOI: 10.1515/ntrev-2015-0029
  9. R. Waser. J. Nanosci. Nanotechnol., 12 (10), 7628 (2012). DOI: 10.1166/jnn.2012.6652
  10. D. Ielmini. Semicond. Sci. Technol., 31 (6), 063002 (2016). DOI: 10.1088/0268-1242/31/6/063002
  11. A. Kindsmuller, A. Meledin, J. Mayer, R. Waser, D. Wouters. Nanoscale, 11 (39), 18201 (2019). DOI: 10.1039/c9nr06624a
  12. S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, C.-Y. Lin. Appl. Phys. Lett., 95, 112904 (2009). DOI: 10.1063/1.3231872
  13. N.K. Upadhyay, W. Sun, P. Lin, S. Joshi, R. Midya, X. Zhang, Z. Wang, H. Jiang, J.H. Yoon, M. Rao, M. Chi, Q. Xia, J.J. Yang. Adv. Electron. Mater., 6 (5), 1901411 (2020). DOI: 10.1002/aelm.201901411
  14. H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu. Appl. Phys. Lett., 96 (12), 123502 (2010). DOI: 10.1063/1.3364130
  15. A.V. Kruglov, D.A. Serov, A.I. Belov, M.N. Koryazhkina, I.N. Antonov, S.Yu. Zubkov, R.N. Kryukov, A.N. Mikhailov, D.O. Filatov, O.N. Gorshkov. ZhTF, 94 (11), 1833 (2024) (in Russian). DOI: 10.61011/JTF.2024.11.59100.204-24
  16. H.A. Abbas. Stabilized Zirconia for Solid Oxide Fuel Cells or Oxygen Sensors: Characterization of Structural and Electrical Properties of Zirconia Doped with Some Oxides (LAP LAMBERT Academic Publishing, Saarbrucken, 2012)
  17. M. Filal, C. Petot, M. Mokchah, C. Chateau, J.L. Carpentier. Solid State Ionics, 80 (1-2), 27 (1995). DOI: 10.1016/0167-2738(95)00137-U
  18. T. Liu, X. Zhang, X. Wang, J. Yu, L. Li. Ionics, 22, 2249 (2016). DOI: 10.1007/s11581-016-1880-1
  19. A. Bogicevic, C. Wolverton, G.M. Crosbie, E.B. Stechel. Phys. Rev. B, 64 (1), 014106 (2001). DOI: 10.1103/PhysRevB.64.014106
  20. V.G. Zavodinskii. FTT, 46 (3), 441 (2004) (in Russian)
  21. R. Devanathan, W.J. Weber, S.C. Singhal, J.D. Gale. Solid State Ionics, 177 (15-16), 1251 (2006). DOI: 10.1016/j.ssi.2006.06.030
  22. R. Krishnamurthy, Y.-G. Yoon, D.J. Srolovitz, R. Car. J. American Ceramic Society, 87 (10), 1821 (2004). DOI: 10.1111/j.1151-2916.2004.tb06325.x
  23. S. Tikhov, O. Gorshkov, I. Antonov, A. Morozov, M. Koryazhkina, D. Filatov. Adv. Condens. Matter Phys., 2018 (8), 2028491 (2018). DOI: 10.1155/2018/2028491
  24. A.V. Yakimov, D.O. Filatov, O.N. Gorshkov, D.A. Antonov, D.A. Liskin, I.N. Antonov, A.V. Belyakov, A.V. Klyuev, A. Carollo, B. Spagnolo. Appl. Phys. Lett., 114 (25), 253506 (2019). DOI: 10.1063/1.5098066
  25. J. Yang, J. Strachan, F. Miao, M.-X. Zhang, M. Pickett, W. Yi, D. Ohlberg, G. Medeiros-Ribeiro, R. Williams. Appl. Phys. A, 102 (4), 785 (2011). DOI: 10.1007/s00339-011-6265-8
  26. C. Chen, S. Gao, F. Zeng, G.S. Tang, S.Z. Li, C. Song, H.D. Fu, F. Pan. J. Appl. Phys., 114 (1), 014502 (2013). DOI: 10.1063/1.4812486
  27. N. Ge, M.-X. Zhang, L. Zhang, J. Yang, Z. Li, R. Williams. Semicond. Sci. Technol., 29 (10), 104003 (2014). DOI: 10.1088/0268-1242/29/10/104003
  28. C.-Y. Lin, C. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, T. Tseng. IEEE Electron Device Lett., 28 (5), 366 (2007). DOI: 10.1109/LED.2007.894652
  29. S.Yu. Zubkov, I.N. Antonov, O.N. Gorshkov, A.P. Kasatkin, R.N. Kryukov, D.E. Nikolichev, D.A. Pavlov, M.E. Shenina. FTT, 60 (3), 591 (2018) (in Russian). DOI: 10.21883/FTT.2018.03.45566.249
  30. F. Iacona, R. Kelly, G. Marletta. J. Vacuum Sci. Technol. A, 17 (5), 2771 (1999). DOI: 10.1116/1.581943
  31. M.-S. Kim, Y.-D. Ko, J.-H. Hong, M.-C. Jeong, J.-M. Myoung, I. Yun. Appl. Surf. Sci., 227 (1-4), 387 (2004). DOI: 10.1016/j.apsusc.2003.12.017
  32. B.J. Choi, D.S. Jeong, S.K. Kim. J. Appl. Phys., 98 (3), 033715 (2005). DOI: 10.1063/1.2001146
  33. B. Singh, B.R. Mehta, D. Varandani, A.V. Savu, J. Brugger. Nanotechnology, 23 (49), 495707 (2012). DOI: 10.1088/0957-4484/23/49/495707
  34. V. Iglesias, M. Lanza, A. Bayerl, M. Porti, M. Nafri a, X. Aymerich, L.F. Liu, J.F. Kang, G. Bersuker, K. Zhang, Z.Y. Shen. Microelectron. Reliability, 52 (9-10), 2110 (2012). DOI: 10.1016/j.microrel.2012.06.073
  35. M. Setvin, M. Reticcioli, F. Poelzleitner, J. Hulva, M. Schmid, L.A. Boatner, C. Franchini, U. Diebold. Science, 359 (6375), 572 (2018). DOI: 10.1126/science.aar2287
  36. K. Kukl, J. Aarik, A. Aidla, O. Kohan, T. Uustare, V. Sammelselg. Appl. Surf. Sci., 230 (1), 249 (2004). DOI: 10.1016/j.apsusc.2004.02.033
  37. P.A. Murawala, M. Sawai, T. Tatsuta, O. Tsuji, S. Fujita, S. Fujita. Jpn. J. Appl. Phys., 32 (1S), 368 (1993). DOI: 10.1143/JJAP.32.368
  38. D.R. Lide. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2016)
  39. Z. Wang, H. Jiang, M.H. Jang, P. Lin, A. Ribbe, Q. Xia, J.J. Yang. Nanoscale, 8 (29), 14023 (2016). DOI: 10.1039/C6NR01085G
  40. A.N. Mikhaylov, E.G. Gryaznov, A.I. Belov, D.S. Korolev, A.N. Sharapov, D.V. Guseinov, D.I. Tetelbaum, S.V. Tikhov, N.V. Malekhonova, A.I. Bobrov, D.A. Pavlov, S.A. Gerasimova, V.B. Kazantsev, N.V. Agudov, A.A. Dubkov, C.M.M. Rosario, N.A. Sobolev, B. Spagnolo. Phys. Status Solidi C, 13 (10-12), 8701 (2016). DOI: 10.1002/pssc.201600083
  41. A.A. Koroleva, A.G. Chernikova, A.A. Chouprik, E.S. Gornev, A.S. Slavich, R.R. Khakimov, E.V. Korostylev, C.S. Hwang, A.M. Markeev. ACS Appl. Mater. Interfaces, 12 (49), 55331 (2020). DOI: 10.1021/acsami.0c14810
  42. M. Lanza, K. Zhang, M. Porti, M. Nafri a, Z.Y. Shen, L.F. Liu, J.F. Kang, D. Gilmer, G. Bersuker. Appl. Phys. Lett., 100 (12), 123508 (2012). DOI: 10.1063/1.3697648
  43. M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafri a, X. Aymerich. Appl. Phys. Lett., 101 (19), 193502 (2012). DOI: 10.1063/1.4765342
  44. D. Yang, J. Xue, J. Wang, H. Wang, S. Wang, X. Lei, J. Yan, W. Zhao. ACS Appl. Electron. Mater., 6 (6), 4764 (2024). DOI: 10.1021/acsaelm.4c00790
  45. Yu.S. Kuz'minov, E.E. Lomonova, V.V. Osiko. Tugoplavkie materialy iz kholodnogo tiglya (Nauka, M., 2004) (in Russian)
  46. R. Frison, S. Heiroth, J.L.M. Rupp, K. Conder, E.J. Barthazy, E. Muller, M. Horisberger, M. Dobeli, L.J. Gauckler. Solid State Ionics, 232, 29 (2013). DOI: 10.1016/j.ssi.2012.11.014
  47. B.K. You, W.I. Park, J.M. Kim, K.-I. Park, H.K. Seo, J.Y. Lee, Y.S. Jung, K.J. Lee. ACS Nano, 8 (9), 9492 (2014). DOI: 10.1021/nn503713f

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru