Influence of oxygen vacancy concentration on the resistive switching parameters of ZrO2(Y)-based memristor structures
Kruglov A. V.
1, Serov D. A.
1, A.I. Belov
1, Koryazhkina M. N.
1, I.N. Antonov
1, S.Yu. Zubkov
1, Kriukov R.N.
1, D.A. Antonov
1, D.O. Filatov
1, Khabibulova V. A.
1, Mikhaylov A. N.
1, Gorshkov O.N.
11Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: krualex@yandex.ru, serow.dim2015@yandex.ru, mahavenok@mail.ru, mian@nifti.unn.ru, gorshkov@nifti.unn.ru
The effect of oxygen vacancy concentration on the parameters of resistive switching in the memristors based on yttria stabilized zirconia ZrO2(Y) was studied. The concentration of oxygen vacancies inside the ZrO2(Y) film and in the region of resistive switching (metal/dielectric interface) varied by changing the doping impurity concentration (8 or 12 mol.% Y2O3) as well as by changing the oxygen exchange conditions by using different active electrode materials having different oxidation properties (Ta, W, or Ru). X-ray photoelectron spectroscopy and conductive atomic force microscopy have revealed the presence of a region saturated with oxygen vacancies and the formation of conductive channels during the manufacture of the memristor stacks that makes it possible to create the memristors, which do not require forming. Electrical measurements have shown that the stacks based on ZrO2(Y) films with the Y2O3 concentration of 8 mol.% demonstrated gradual resistive switching, smaller current state spread, and may be interesting for neuromorphic applications. The stacks with Ta and W electrodes demonstrated similar resistive switching parameters and good CMOS integration capabilities, while the stacks with Ru electrodes demonstrated the parameters incompatible with CMOS requirements. Keywords: memristor, resistive memory, resistive switching, filament, current-voltage curve, electroforming, yttria-stabilized zirconia.
- A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov, O.A. Telminov, V.B. Kazantsev. Supercomp. Frontiers and Innovations, 10 (2), 77 (2023). DOI: 10.14529/jsfi230206
- X. Duan, Z. Cao, K. Gao, W. Yan, S. Sun, G. Zhou, Z. Wu, F. Ren, B. Sun. Adv. Mater., 36 (14), 2310704 (2024). DOI: 10.1002/adma.202310704
- M. Lanza, R. Waser, D. Ielmini, J.J. Yang, L. Goux, J. Sune, A.J. Kenyon, A. Mehonic, S. Spiga, V. Rana, S. Wiefels, S. Menzel, I. Valov, M.A. Villena, E. Miranda, X. Jing, F. Campabadal, M.B. Gonzalez, F. Aguirre, F. Palumbo, K. Zhu, J.B. Roldan, F.M. Puglisi, L. Larcher, T.-H. Hou, T. Prodromakis, Y. Yang, P. Huang, T. Wan, Y. Chai, K.L. Pey, N. Raghavan, S. Duenas, T. Wang, Q. Xia, S. Pazos. ACS Nano, 15 (11), 17214 (2021). DOI: 10.1021/acsnano.1c06980
- O. Kapur, D. Guo, J. Reynolds, D. Newbrook, Y. Han, R. Beanland, L. Jiang, C.H. Kees de Groot, R. Huang. Sci. Reports, 14, 14008 (2024). DOI:10.1038/s41598-024-64499-2
- F. Cai, J.M. Correll, S.H. Lee, Y. Lim, V. Bothra, Z. Zhang, M.P. Flynn, W.D. Lu. Nature Electron., 2, 290 (2019). DOI: 10.1038/s41928-019-0270-x
- M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang, H. Liu, H.-Y. Chen, R. Midya, F. Ye, H. Jiang, Z. Wang, M. Wu, M. Hu, H. Wang, Q. Xia, N. Ge, J. Li, J.J. Yang. Nature, 615, 823 (2023). DOI: 10.1038/s41586-023-05759-5
- J.S. Lee, S. Lee, T.W. Noh. Appl. Phys. Rev., 2 (3), 031303 (2015). DOI: 10.1063/1.4929512
- B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou. Nanotechnol. Rev., 5 (3), 311 (2016). DOI: 10.1515/ntrev-2015-0029
- R. Waser. J. Nanosci. Nanotechnol., 12 (10), 7628 (2012). DOI: 10.1166/jnn.2012.6652
- D. Ielmini. Semicond. Sci. Technol., 31 (6), 063002 (2016). DOI: 10.1088/0268-1242/31/6/063002
- A. Kindsmuller, A. Meledin, J. Mayer, R. Waser, D. Wouters. Nanoscale, 11 (39), 18201 (2019). DOI: 10.1039/c9nr06624a
- S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, C.-Y. Lin. Appl. Phys. Lett., 95, 112904 (2009). DOI: 10.1063/1.3231872
- N.K. Upadhyay, W. Sun, P. Lin, S. Joshi, R. Midya, X. Zhang, Z. Wang, H. Jiang, J.H. Yoon, M. Rao, M. Chi, Q. Xia, J.J. Yang. Adv. Electron. Mater., 6 (5), 1901411 (2020). DOI: 10.1002/aelm.201901411
- H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu. Appl. Phys. Lett., 96 (12), 123502 (2010). DOI: 10.1063/1.3364130
- A.V. Kruglov, D.A. Serov, A.I. Belov, M.N. Koryazhkina, I.N. Antonov, S.Yu. Zubkov, R.N. Kryukov, A.N. Mikhailov, D.O. Filatov, O.N. Gorshkov. ZhTF, 94 (11), 1833 (2024) (in Russian). DOI: 10.61011/JTF.2024.11.59100.204-24
- H.A. Abbas. Stabilized Zirconia for Solid Oxide Fuel Cells or Oxygen Sensors: Characterization of Structural and Electrical Properties of Zirconia Doped with Some Oxides (LAP LAMBERT Academic Publishing, Saarbrucken, 2012)
- M. Filal, C. Petot, M. Mokchah, C. Chateau, J.L. Carpentier. Solid State Ionics, 80 (1-2), 27 (1995). DOI: 10.1016/0167-2738(95)00137-U
- T. Liu, X. Zhang, X. Wang, J. Yu, L. Li. Ionics, 22, 2249 (2016). DOI: 10.1007/s11581-016-1880-1
- A. Bogicevic, C. Wolverton, G.M. Crosbie, E.B. Stechel. Phys. Rev. B, 64 (1), 014106 (2001). DOI: 10.1103/PhysRevB.64.014106
- V.G. Zavodinskii. FTT, 46 (3), 441 (2004) (in Russian)
- R. Devanathan, W.J. Weber, S.C. Singhal, J.D. Gale. Solid State Ionics, 177 (15-16), 1251 (2006). DOI: 10.1016/j.ssi.2006.06.030
- R. Krishnamurthy, Y.-G. Yoon, D.J. Srolovitz, R. Car. J. American Ceramic Society, 87 (10), 1821 (2004). DOI: 10.1111/j.1151-2916.2004.tb06325.x
- S. Tikhov, O. Gorshkov, I. Antonov, A. Morozov, M. Koryazhkina, D. Filatov. Adv. Condens. Matter Phys., 2018 (8), 2028491 (2018). DOI: 10.1155/2018/2028491
- A.V. Yakimov, D.O. Filatov, O.N. Gorshkov, D.A. Antonov, D.A. Liskin, I.N. Antonov, A.V. Belyakov, A.V. Klyuev, A. Carollo, B. Spagnolo. Appl. Phys. Lett., 114 (25), 253506 (2019). DOI: 10.1063/1.5098066
- J. Yang, J. Strachan, F. Miao, M.-X. Zhang, M. Pickett, W. Yi, D. Ohlberg, G. Medeiros-Ribeiro, R. Williams. Appl. Phys. A, 102 (4), 785 (2011). DOI: 10.1007/s00339-011-6265-8
- C. Chen, S. Gao, F. Zeng, G.S. Tang, S.Z. Li, C. Song, H.D. Fu, F. Pan. J. Appl. Phys., 114 (1), 014502 (2013). DOI: 10.1063/1.4812486
- N. Ge, M.-X. Zhang, L. Zhang, J. Yang, Z. Li, R. Williams. Semicond. Sci. Technol., 29 (10), 104003 (2014). DOI: 10.1088/0268-1242/29/10/104003
- C.-Y. Lin, C. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, T. Tseng. IEEE Electron Device Lett., 28 (5), 366 (2007). DOI: 10.1109/LED.2007.894652
- S.Yu. Zubkov, I.N. Antonov, O.N. Gorshkov, A.P. Kasatkin, R.N. Kryukov, D.E. Nikolichev, D.A. Pavlov, M.E. Shenina. FTT, 60 (3), 591 (2018) (in Russian). DOI: 10.21883/FTT.2018.03.45566.249
- F. Iacona, R. Kelly, G. Marletta. J. Vacuum Sci. Technol. A, 17 (5), 2771 (1999). DOI: 10.1116/1.581943
- M.-S. Kim, Y.-D. Ko, J.-H. Hong, M.-C. Jeong, J.-M. Myoung, I. Yun. Appl. Surf. Sci., 227 (1-4), 387 (2004). DOI: 10.1016/j.apsusc.2003.12.017
- B.J. Choi, D.S. Jeong, S.K. Kim. J. Appl. Phys., 98 (3), 033715 (2005). DOI: 10.1063/1.2001146
- B. Singh, B.R. Mehta, D. Varandani, A.V. Savu, J. Brugger. Nanotechnology, 23 (49), 495707 (2012). DOI: 10.1088/0957-4484/23/49/495707
- V. Iglesias, M. Lanza, A. Bayerl, M. Porti, M. Nafri a, X. Aymerich, L.F. Liu, J.F. Kang, G. Bersuker, K. Zhang, Z.Y. Shen. Microelectron. Reliability, 52 (9-10), 2110 (2012). DOI: 10.1016/j.microrel.2012.06.073
- M. Setvin, M. Reticcioli, F. Poelzleitner, J. Hulva, M. Schmid, L.A. Boatner, C. Franchini, U. Diebold. Science, 359 (6375), 572 (2018). DOI: 10.1126/science.aar2287
- K. Kukl, J. Aarik, A. Aidla, O. Kohan, T. Uustare, V. Sammelselg. Appl. Surf. Sci., 230 (1), 249 (2004). DOI: 10.1016/j.apsusc.2004.02.033
- P.A. Murawala, M. Sawai, T. Tatsuta, O. Tsuji, S. Fujita, S. Fujita. Jpn. J. Appl. Phys., 32 (1S), 368 (1993). DOI: 10.1143/JJAP.32.368
- D.R. Lide. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2016)
- Z. Wang, H. Jiang, M.H. Jang, P. Lin, A. Ribbe, Q. Xia, J.J. Yang. Nanoscale, 8 (29), 14023 (2016). DOI: 10.1039/C6NR01085G
- A.N. Mikhaylov, E.G. Gryaznov, A.I. Belov, D.S. Korolev, A.N. Sharapov, D.V. Guseinov, D.I. Tetelbaum, S.V. Tikhov, N.V. Malekhonova, A.I. Bobrov, D.A. Pavlov, S.A. Gerasimova, V.B. Kazantsev, N.V. Agudov, A.A. Dubkov, C.M.M. Rosario, N.A. Sobolev, B. Spagnolo. Phys. Status Solidi C, 13 (10-12), 8701 (2016). DOI: 10.1002/pssc.201600083
- A.A. Koroleva, A.G. Chernikova, A.A. Chouprik, E.S. Gornev, A.S. Slavich, R.R. Khakimov, E.V. Korostylev, C.S. Hwang, A.M. Markeev. ACS Appl. Mater. Interfaces, 12 (49), 55331 (2020). DOI: 10.1021/acsami.0c14810
- M. Lanza, K. Zhang, M. Porti, M. Nafri a, Z.Y. Shen, L.F. Liu, J.F. Kang, D. Gilmer, G. Bersuker. Appl. Phys. Lett., 100 (12), 123508 (2012). DOI: 10.1063/1.3697648
- M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafri a, X. Aymerich. Appl. Phys. Lett., 101 (19), 193502 (2012). DOI: 10.1063/1.4765342
- D. Yang, J. Xue, J. Wang, H. Wang, S. Wang, X. Lei, J. Yan, W. Zhao. ACS Appl. Electron. Mater., 6 (6), 4764 (2024). DOI: 10.1021/acsaelm.4c00790
- Yu.S. Kuz'minov, E.E. Lomonova, V.V. Osiko. Tugoplavkie materialy iz kholodnogo tiglya (Nauka, M., 2004) (in Russian)
- R. Frison, S. Heiroth, J.L.M. Rupp, K. Conder, E.J. Barthazy, E. Muller, M. Horisberger, M. Dobeli, L.J. Gauckler. Solid State Ionics, 232, 29 (2013). DOI: 10.1016/j.ssi.2012.11.014
- B.K. You, W.I. Park, J.M. Kim, K.-I. Park, H.K. Seo, J.Y. Lee, Y.S. Jung, K.J. Lee. ACS Nano, 8 (9), 9492 (2014). DOI: 10.1021/nn503713f
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.