Experimental study of passive electrnonic components in cryogenic electronics
Volkhin D. I. 1, Novikov I. L. 1, Vostretsov A.G. 1
1Novosibirsk State Technical University, Novosibirsk, Russia
Email: d.i.volkhin@mail.ru, novikov@corp.nstu.ru, ag_vost@mail.ru

PDF
This paper characterizes the performance of commercially available passive surface-mount devices (SMDs) - specifically capacitors and inductors in 0402 and 0201 packages - at cryogenic temperatures of 300 K, 77 K, and 4 K. The frequency dependence of their nominal values and S-parameters was measured. The results indicate that the capacitance of NPO and thin-film SMD capacitors remained within 4 % of their nominal values at both 77 K and 4 K. Their scattering matrices also exhibited only minor deviations from manufacturer specifications at these temperatures. In contrast, capacitors fabricated without thermally stabilized ceramics were found to be unsuitable for cryogenic applications. For thin-film SMD inductors cooled to 77 K, the inductance value varied by approximately 10 %. Consequently, their manufacturer-provided scattering matrices must be adjusted when designing microwave circuits for cryogenic operation. However, upon cooling to 4 K, the influence of parasitic effects from the input and output lines became significant. This interference precluded the accurate extraction of component parameters using the chosen measurement technique. Therefore, further investigation is required to fully understand the behavior of surface-mount inductors at liquid helium temperatures. Keywords: capacitors, inductors, passive components, cryogenic electronics, capacitor scattering matrix, inductance scattering matrix.
  1. M. Schmidt, M. von Helversen, M. Lopez, F. Gericke, E. Schlottmann, T. Heindel, S. Kuck, S. Reitzenstein, J. Beyer. J. Low Temp. Phys., 193, 1243 (2018). DOI: 10.1007/s10909-018-1932-1
  2. N. Oukhanski, M. Grajcar, E. Il'ichev, H.-G. Meyer. Rev. Sci. Instrum., 74, 1145 (2003). DOI: 10.1063/1.1532539
  3. N. Wadefalk, A. Mellberg, I. Angelov, M.E. Barsky, S. Bui, E. Choumas, R.W. Grundbacher, E.L. Kollberg, R. Lai, N. Rorsman, P. Starski, J. Stenarson, D.C. Streit, H. Zirath. IEEE Trans. Microwave Theory Tech., 51 (6), 1705 (2003). DOI: 10.1109/TMTT.2003.812570
  4. A.V. Gordeeva, V.O. Zbrozhek, A.L. Pankratov, L.S. Revin, V.A. Shamporov, A.A. Gunbina, L.S. Kuzmin. Appl. Phys. Lett., 110, 162603 (2017). DOI: 10.1063/1.4982031
  5. S. Weinreb, J. Bardin, H. Mani, G. Jones. Rev. Sci. Instrum., 80, 044702 (2009). DOI: 10.1063/1.3103939
  6. J. Clarke, F.K. Wilhelm. Nature, 453, 1031 (2008). DOI: 10.1038/nature07128
  7. G. Wendin. Rep. Prog. Phys., 80, 106001 (2017). DOI: 10.1088/1361-6633/aa7e1a
  8. B.I. Ivanov, M. Grajcar, I.L. Novikov, A.G. Vostretsov, E. Il'ichev Tech. Phys. Lett., 42 (4), 380 (2016). DOI: 10.1134/S1063785016040076
  9. M.J. Gong, U. Alakusu, S. Bonen, M. Dadash, L. Lucci, H. Jia, L. Gutierrez, W. Chen, D. Daughton, G.C. Adam, S. Iordanescu, M. Pasteanu, N. Messaoudi, D. Harame, A. Muller, R. Mansour, S. Voinigescu. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC, Boston, MA, USA, 111, 2019), DOI: 10.1109/RFIC.2019.8701847
  10. B. Patra, M. Mehrpoo, A. Ruffino, F. Sebastiano, E. Charbon, M. Babaie. IEEE J. Electron Devices Society, 8, 448 (2020). DOI: 10.1109/jeds.2020.2986722
  11. F. Teyssandier, D. Pr\^ele. In: Ninth International Workshop on Low Temperature Electronics --- WOLTE9 (Jun 2010, Guaruja, Brazil, 2010)
  12. H. Homulle, S. Visser, B. Patra, E. Charbon. Rev. Sci. Instrum., 89, 014703 (2018). DOI: 10.1063/1.5004484
  13. I.L. Novikov, D.I. Volkhin, A.G. Vostretso In: IEEE 3rd International Conference on Problems of Informatics, Electronics and Radio Engineering (PIERE) (Novosibirsk, Russian Federation, 300, 2024), DOI: 10.1109/PIERE62470.2024.10804918
  14. AVX capacitors ACCU-P series. Datasheet. URL: https://datasheets.kyocera-avx.com/Accu-P.pdf
  15. Kemet capacitors CBR series. Datasheet. URL: https://content.kemet.com/datasheets/KEM_C1030_ CBR_SMD.pdf
  16. Murata capacitors GJM series. Datasheet. URL: https://www.murata.com/en-us/products/capacitor/ ceramiccapacitor/overview/lineup/smd/gjm\#anchor-2
  17. Murata capacitors GRM series. Datasheet. URL: https://www.murata.com/en-global/products/capacitor/ ceramiccapacitor/overview/lineup/smd/grm
  18. Murata inductors. Chip coil (chip inductor) for Consumer equipment \& Industrial equipment LQP03TN02 Reference specification. URL: https://search.murata.co.jp/Ceramy/image/img/P02/ JELF243C-0015.pdf
  19. Murata inductors Chip coil (chip inductor) for Consumer equipment \& Industrial equipment LQP03HQ02 Reference specification. URL: https://search.murata.co.jp/Ceramy/image/img/P02/ JELF243C-0021.pdf
  20. B.I. Ivanov, D.I. Volkhin, I.L. Novikov, D.K. Pitsun, D.O. Moskalev, I.A. Rodionov, E. Il'ichev, A.G. Vostretsov. Beilstein J. Nanotechnol., 11, 1484 (2020). DOI: 10.3762/bjnano.11.131
  21. D.I. Volkhin, I.L. Novikov, A.G. Vostretsov In: IEEE 24th International Conference of Young Professionals in Electron Devices and Materials (EDM) (Novosibirsk, Russian Federation, 800, 2023), DOI: 10.1109/EDM58354.2023.10225128

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru