Volkhin D. I.
1, Novikov I. L.
1, Vostretsov A.G.
11Novosibirsk State Technical University, Novosibirsk, Russia
Email: d.i.volkhin@mail.ru, novikov@corp.nstu.ru, ag_vost@mail.ru
This paper characterizes the performance of commercially available passive surface-mount devices (SMDs) - specifically capacitors and inductors in 0402 and 0201 packages - at cryogenic temperatures of 300 K, 77 K, and 4 K. The frequency dependence of their nominal values and S-parameters was measured. The results indicate that the capacitance of NPO and thin-film SMD capacitors remained within 4 % of their nominal values at both 77 K and 4 K. Their scattering matrices also exhibited only minor deviations from manufacturer specifications at these temperatures. In contrast, capacitors fabricated without thermally stabilized ceramics were found to be unsuitable for cryogenic applications. For thin-film SMD inductors cooled to 77 K, the inductance value varied by approximately 10 %. Consequently, their manufacturer-provided scattering matrices must be adjusted when designing microwave circuits for cryogenic operation. However, upon cooling to 4 K, the influence of parasitic effects from the input and output lines became significant. This interference precluded the accurate extraction of component parameters using the chosen measurement technique. Therefore, further investigation is required to fully understand the behavior of surface-mount inductors at liquid helium temperatures. Keywords: capacitors, inductors, passive components, cryogenic electronics, capacitor scattering matrix, inductance scattering matrix.
- M. Schmidt, M. von Helversen, M. Lopez, F. Gericke, E. Schlottmann, T. Heindel, S. Kuck, S. Reitzenstein, J. Beyer. J. Low Temp. Phys., 193, 1243 (2018). DOI: 10.1007/s10909-018-1932-1
- N. Oukhanski, M. Grajcar, E. Il'ichev, H.-G. Meyer. Rev. Sci. Instrum., 74, 1145 (2003). DOI: 10.1063/1.1532539
- N. Wadefalk, A. Mellberg, I. Angelov, M.E. Barsky, S. Bui, E. Choumas, R.W. Grundbacher, E.L. Kollberg, R. Lai, N. Rorsman, P. Starski, J. Stenarson, D.C. Streit, H. Zirath. IEEE Trans. Microwave Theory Tech., 51 (6), 1705 (2003). DOI: 10.1109/TMTT.2003.812570
- A.V. Gordeeva, V.O. Zbrozhek, A.L. Pankratov, L.S. Revin, V.A. Shamporov, A.A. Gunbina, L.S. Kuzmin. Appl. Phys. Lett., 110, 162603 (2017). DOI: 10.1063/1.4982031
- S. Weinreb, J. Bardin, H. Mani, G. Jones. Rev. Sci. Instrum., 80, 044702 (2009). DOI: 10.1063/1.3103939
- J. Clarke, F.K. Wilhelm. Nature, 453, 1031 (2008). DOI: 10.1038/nature07128
- G. Wendin. Rep. Prog. Phys., 80, 106001 (2017). DOI: 10.1088/1361-6633/aa7e1a
- B.I. Ivanov, M. Grajcar, I.L. Novikov, A.G. Vostretsov, E. Il'ichev Tech. Phys. Lett., 42 (4), 380 (2016). DOI: 10.1134/S1063785016040076
- M.J. Gong, U. Alakusu, S. Bonen, M. Dadash, L. Lucci, H. Jia, L. Gutierrez, W. Chen, D. Daughton, G.C. Adam, S. Iordanescu, M. Pasteanu, N. Messaoudi, D. Harame, A. Muller, R. Mansour, S. Voinigescu. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC, Boston, MA, USA, 111, 2019), DOI: 10.1109/RFIC.2019.8701847
- B. Patra, M. Mehrpoo, A. Ruffino, F. Sebastiano, E. Charbon, M. Babaie. IEEE J. Electron Devices Society, 8, 448 (2020). DOI: 10.1109/jeds.2020.2986722
- F. Teyssandier, D. Pr\^ele. In: Ninth International Workshop on Low Temperature Electronics --- WOLTE9 (Jun 2010, Guaruja, Brazil, 2010)
- H. Homulle, S. Visser, B. Patra, E. Charbon. Rev. Sci. Instrum., 89, 014703 (2018). DOI: 10.1063/1.5004484
- I.L. Novikov, D.I. Volkhin, A.G. Vostretso In: IEEE 3rd International Conference on Problems of Informatics, Electronics and Radio Engineering (PIERE) (Novosibirsk, Russian Federation, 300, 2024), DOI: 10.1109/PIERE62470.2024.10804918
- AVX capacitors ACCU-P series. Datasheet. URL: https://datasheets.kyocera-avx.com/Accu-P.pdf
- Kemet capacitors CBR series. Datasheet. URL: https://content.kemet.com/datasheets/KEM_C1030_ CBR_SMD.pdf
- Murata capacitors GJM series. Datasheet. URL: https://www.murata.com/en-us/products/capacitor/ ceramiccapacitor/overview/lineup/smd/gjm\#anchor-2
- Murata capacitors GRM series. Datasheet. URL: https://www.murata.com/en-global/products/capacitor/ ceramiccapacitor/overview/lineup/smd/grm
- Murata inductors. Chip coil (chip inductor) for Consumer equipment \& Industrial equipment LQP03TN02 Reference specification. URL: https://search.murata.co.jp/Ceramy/image/img/P02/ JELF243C-0015.pdf
- Murata inductors Chip coil (chip inductor) for Consumer equipment \& Industrial equipment LQP03HQ02 Reference specification. URL: https://search.murata.co.jp/Ceramy/image/img/P02/ JELF243C-0021.pdf
- B.I. Ivanov, D.I. Volkhin, I.L. Novikov, D.K. Pitsun, D.O. Moskalev, I.A. Rodionov, E. Il'ichev, A.G. Vostretsov. Beilstein J. Nanotechnol., 11, 1484 (2020). DOI: 10.3762/bjnano.11.131
- D.I. Volkhin, I.L. Novikov, A.G. Vostretsov In: IEEE 24th International Conference of Young Professionals in Electron Devices and Materials (EDM) (Novosibirsk, Russian Federation, 800, 2023), DOI: 10.1109/EDM58354.2023.10225128
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.