Zakharova A. V.1,2
1St. Petersburg State University, St. Petersburg, Russia
2Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
Email: zakharova.annet@gmail.com
The interaction of the electronic shell of a hexatomic "symmetric top" molecule with the Dark Matter halo is studied under the assumption that it is formed by a condensate of the pseudoscalar axion field. In the linear order, the contribution of the corresponding interaction vanishes for non-chiral molecules in equilibrium configurations, that's why chiral molecules were previously considered for its search. In this paper, we point out the possibility of this interaction for non-chiral molecules of the "symmetric top" type through transitions between excited rovibrational, and consider it using the example of the RaOCH3 molecule. For this molecule, the effect is strongly suppressed, but the mechanism considered can lead to the observable effects in other molecules of this type. Keywords: axion, symmetric top molecule, opposite parity levels, self-consistent field.
- R.D. Peccei, H.R. Quinn. Phys. Rev. Lett., 38, 1440 (1977). DOI: 10.1103/PhysRevLett.38.1440
- M.D. Schwartz. Quantum field theory and the standard model (Cambridge University Press, 2014)
- S. Navas et al. (Particle Data Group). Phys. Rev. D, 110, 030001 (2024). DOI: 10.1103/PhysRevD.110.030001
- I.B. Khriplovich, S.K. Lamoreaux. CP violation without strangeness: electric dipole moments of particles, atoms, and molecules (Springer Science \& Business Media, 1997)
- N. Cabibbo. Phys. Rev. Lett., 10, 531 (1963). DOI: 10.1103/PhysRevLett.10.531
- M. Kobayashi, T. Maskawa. Prog. Theor. Phys., 49, 652 (1973). DOI: 10.1143/PTP.49.652
- B. Pontecorvo, Zh. Eksp. Teor. Fiz., 34, 247 (1957)
- Z. Maki, M. Nakagawa, S. Sakata. Prog. Theor. Phys., 28, 870 (1962). DOI: 10.1143/PTP.28.870
- T. Fukuyama. Int. J. Mod. Phys. A, 27, 1230015 (2012). DOI: 10.1142/S0217751X12300153
- M. Pospelov, A. Ritz. Phys. Rev. D, 89, 056006 (2014). DOI: 10.1103/PhysRevD.89.056006, arXiv:1311.5537 [hep-ph]
- Y. Yamaguchi, N. Yamanaka. Phys. Rev. Lett., 125, 241802 (2020). DOI: 10.1103/PhysRevLett.125.241802, arXiv:2003.08195 [hep-ph]
- Y. Yamaguchi, N. Yamanaka. Phys. Rev. D, 103, 013001 (2021). DOI: 10.1103/PhysRevD.103.013001, arXiv:2006.00281 [hep-ph]
- A.D. Sakharov. In The Intermissions... Collected Works on Research into the Essentials of Theoretical Physics in Russian Federal Nuclear Center, Arzamas-16 (World Scientific, 1998). P. 84--87
- J. Ginges, V.V. Flambaum. Phys. Rep., 397, 63 (2004). DOI: 10.1016/j.physrep.2004.03.005
- J. Baron, W.C. Campbell, D. DeMille, J.M. Doyle, G. Gabrielse, Y.V. Gurevich, P.W. Hess, N.R. Hutzler, E. Kirilov, I. Kozyryev et al. Science, 343, 269 (2014). DOI: 10.1126/science.1248213
- D.V. Chubukov, L.V. Skripnikov, L.N. Labzowsky. JETP Lett., 110, 382 (2019). DOI: 10.1134/S0021364019180036
- V. Andreev, D. Ang, D. DeMille, J. Doyle, G. Gabrielse, J. Haefner, N. Hutzler, Z. Lasner, C. Meisenhelder, B.O. Leary et al. Nature, 562, 355 (2018). DOI: 10.1038/s41586-018-0599-8
- T.S. Roussy, L. Caldwell, T. Wright, W.B. Cairncross, Y. Shagam, K.B. Ng, N. Schlossberger, S.Y. Park, A. Wang, J. Ye et al. Science, 381, 46 (2023). DOI: 10.1126/science.adg4084
- M.G. Kozlov, L.N. Labzowsky. J. Phys. B, 28, 1933 (1995). DOI: 10.1088/0953-4075/28/10/008
- D. Maison, L. Skripnikov, A. Oleynichenko, A. Zaitsevskii. J. Chem. Phys., 154, 224303 (2021). DOI: 10.1063/5.0051590
- S.D. Prosnyak, L.V. Skripnikov. Phys. Rev. A, 109, 042821 (2024). DOI: 10.1103/PhysRevA.109.042821
- K. Gaul, M.G. Kozlov, T.A. Isaev, R. Berger. Phys. Rev. Lett., 125, 123004 (2020). DOI: 10.1103/PhysRevLett.125.123004
- A. Zakharova, A. Petrov. Phys. Rev. A, 103, 032819 (2021). DOI: 10.1103/PhysRevA.103.032819, arXiv:2012.08427 [physics.atom-ph]
- A. Zakharova, I. Kurchavov, A. Petrov. J. Chem. Phys., 155, 164301 (2021). DOI: 10.1063/5.0069281
- A. Zakharova, A. Petrov. J. Chem. Phys., 157, (2022). DOI: 10.1063/5.0121110
- A. Zakharova. Phys. Rev. A, 105, 032811 (2022). DOI: 10.1103/PhysRevA.105.032811
- P. Yu, N.R. Hutzler. Phys. Rev. Lett., 126, 023003 (2021). DOI: 10.1103/PhysRevLett.126.023003
- C. Zhang, X. Zheng, L. Cheng. Phys. Rev. A, 104, 012814 (2021). DOI: 10.1103/PhysRevA.104.012814
- Y. Chamorro, A. Borschevsky, E. Eliav, N.R. Hutzler, S. Hoekstra, L.F. Pavsteka. Phys. Rev. A, 106, 052811 (2022). DOI: 10.1103/PhysRevA.106.052811
- A. Zakharova. Chem. Phys. Lett., 854, 141552 (2024). DOI: 10.1016/j.cplett.2024.141552
- T.A. Isaev, R. Berger. Phys. Rev. Lett., 116, 063006 (2016) DOI: 10.1103/PhysRevLett.116.063006
- I. Kozyryev, L. Baum, K. Matsuda, J.M. Doyle. Chem. Phys. Chem., 17, 3641 (2016). DOI: 10.1002/cphc.201601051
- I. Kozyryev, T.C. Steimle, P. Yu, D.-T. Nguyen, J.M. Doyle. New J. Phys., 21, 052002 (2019). DOI: 10.1088/1367-2630/ab19d7
- B.L. Augenbraun, Z.D. Lasner, A. Frenett, H. Sawaoka, A.T. Le, J.M. Doyle, T.C. Steimle. Phys. Rev. A, 103, 022814 (2021). DOI: 10.1103/PhysRevA.103.022814
- D. Mitra, N.B. Vilas, C. Hallas, L. Anderegg, B.L. Augenbraun, L. Baum, C. Miller, S. Raval, J.M. Doyle. Science, 369, 1366 (2020). DOI: 10.1126/science.abc53
- M. Fan, C. Holliman, X. Shi, H. Zhang, M. Straus, X. Li, S. Buechele, A. Jayich. Physical Rev. Lett., 126, 023002 (2021). DOI: 10.1103/PhysRevLett.126.023002
- K. Gaul, N.R. Hutzler, P. Yu, A.M. Jayich, M. Iliavs, A. Borschevsky. Phys. Rev. A, 109, 042819 (2024). DOI: 10.1103/PhysRevA.109.042819
- G. Dvali, S. Zell. J. Cosm. Astropart. Phys., 2018 (07), 064.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.