Two-photon ionization of the K-shell of an atomic ion
Hopersky A. N. 1, Nadolinsky A. M. 1, Koneev R. V. 1
1Rostov State University for Railway Transportation, Rostov-on-Don, Russia
Email: amnrnd@mail.ru

PDF
Theoretical predictions of the analytical structure and absolute values of the generalized cross section of two-photon single ionization of the K-shell of the heavy neon-like atomic ion of iron (Fe16+) are presented. A pronounced resonance subthreshold structure of the generalized cross section and the effect of destructive quantum interference of probability amplitudes of radiative transitions into virtual excited states of p-symmetry are established. The presence of a valence 2p6-shell in the ionic core leads to the emergence of an additional giant resonance in the generalized cross section as an effect of "inverse" hard x-ray emission of the Kα-type 1s^2(2s^2)2p^5+hω-> 1s(2s^2)2p6. A scheme of the proposed experiment with linearly polarized x-ray photons to verify the obtained theoretical results is presented. Keywords: two-photon resonant single ionization, neon-like atomic ion, probability amplitude, generalized cross section.
  1. Y. Kubota, K. Tamasaku. Nonlinear X-Ray Spectroscopy for Materials Science (Springer Series in Optical Science), 246, 119-145 (2023)
  2. M. Chergui, M. Beye, S. Mukamel, Cr. Svetina, C. Mascioveccio. Nature Rev. Phys., 5, 578 (2023). DOI: 10.1038/s42254-023-00643-7
  3. J. Fan, J. Hofbrucker, A.V. Volotka, S. Fritzsche. Eur. Phys. J. D, 76, 18 (2022). DOI: 10.1140/epjd/s10053-021-00334-x
  4. A.N. Grum-Grzhimailo, E.V. Gryzlova. Phys. Rev. A, 89, 043424 (2014). DOI: 10.1103/PhysRevA.89.043424
  5. S.A. Novikov, A.N. Hopersky. J. Phys. B, 33, 2287 (2000). DOI: 10.1088/0953-4075/33/12/310
  6. S.A. Novikov, A.N. Hopersky. J. Phys. B, 34, 4857 (2001). DOI: 10.1088/0953-4075/34/23/327
  7. S.A. Novikov, A.N. Hopersky. Radiat. Phys. Chem., 63, 115 (2002). DOI: 10.1016/S0969-806X (01)00225-0
  8. S. Kuhn, Ch. Cheung, N.S. Oreshkina et al. Phys. Rev. Lett., 129, 245001 (2022). DOI: 10.1103/PhysRevLett.129.245001
  9. Ch. Shah, M. Togawa, M. Botz et al. Astrophys. J., 969, 52 (2024). DOI: 10.3847/1538-4357/ad454b
  10. S.J. Gunderson, K.G. Gayley, D.P. Huenemoerder, P. Pradhan, N.A. Miller. MNRAS, 529, 3154 (2024). DOI: 10.48550/arXiv.2206.05219
  11. M. Nrisimhamurty, G. Aravind, P.C. Deshmukh, S.T. Manson. Phys. Rev. A, 91, 013404 (2015). DOI: 10.1103/PhysRevA.91.013404
  12. L.D. Landau. Dokl. Akad. Nauk SSSR, 60, 207 (1948)
  13. C.N. Yang. Phys. Rev., 77, 242 (1950). DOI: 10.1103/PhysRev.77.242
  14. A.N. Hopersky, A.M. Nadolinsky, S.A. Novikov. Phys. Rev. A, 98, 063424 (2018). DOI: 10.1103/PhysRevA.98.063424
  15. N. Bloembergen. Nonlinear Optics (World Scientific, Singapore, 1996)
  16. P. Lambropoulos, X. Tang. J. Opt. Soc. Am. B, 4, 821 (1987). DOI: 10.1364/JOSAB.4.000821
  17. R. Loudon. The Quantum Theory of Light (Oxford Science Publications, 2001)
  18. A.N. Hopersky, R.V. Koneev. Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Science, 1, 24 (2023). DOI: 10.18522/1026-2237-2023-1-24-28
  19. M.H. Chen, B. Crasemann, Kh.R. Karim, H. Mark. Phys. Rev. A, 24, 1845 (1981). DOI: 10.1103/PhysRevA.24.1845
  20. A. Hibbert, M. Le Dourneuf, M. Mohan. At. Data Nucl. Data Tables, 53, 23 (1993)
  21. T. Shirai, J. Sugar, A. Musgrove, W.L. Wiese. J. Phys. Chem. Ref. Data Monograph., 8, 1-632 (2000). DOI: 10.1063/1.555907
  22. C. Bostedt, J.D. Bozek, P.H. Bucksbaum et al. J. Phys. B, 46, 164003 (2013). DOI: 10.1088/0953-4075/46/16/164003
  23. I. Nam, Ch-K. Min, B. Oh et al. Nat. Photonics, 15, 435 (2021). DOI: 10.1038/s41566-021-00777-z
  24. Ch. Grech, M.W. Guetg, G.A. Geloni et al. Phys. Rev. Accel. Beams, 27, 050701 (2024). DOI: 10.1103/PhysRevAccelBeams.27.050701
  25. A.A. Kryloveckij, N.L. Manakov, S.I. Marmo. ZhETF, 119, 45 (2001) (in Russian)
  26. B. Gao, A.F. Starace. Phys. Rev. Lett., 61, 404 (1988). DOI: 10.1103/PhysRevLett.61.404
  27. A.E. Orel, T.N. Rescigno. Chem. Phys. Lett., 146, 434 (1988). DOI: 10.1016/0009-2614(88)87473-6
  28. E.I. Staroselskaya, A.N. Grum-Grzhimailo. Moscow Univ. Phys., 70, 374(2015). DOI: 10.3103/S0027134915050148
  29. A.N. Hopersky, A.M. Nadolinsky, S.A. Novikov. J. Phys. B, 57, 215601 (2024). DOI: 10.1088/1361-6455/ad7cab
  30. [M.Ya. Amusia. Atomic Photoeffect (Springer, US, 2013)
  31. G. Breit, J.A. Wheeler. Phys. Rev., 46, 1087 (1934). DOI: 10.1103/PhysRev.46.1087
  32. J.D. Brandenburg, J. Seger, Z. Xu, W. Zha. Rep. Prog. Phys., 86, 083901 (2023). arXiv:2208.14943 [hep-ph]
  33. The STAR Collaboration. Phys. Rev. Lett., 127, 052302 (2021). DOI: 10.1103/PhysRevLett.127.052302
  34. The CMS Collaboration. arXiv:2412.15413v1 [nucl-ex] (2024). DOI: 10.48550/arXiv.2412.15413
  35. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonsky. Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)
  36. I.I. Sobelman. Theory of Atomic Spectra (Alpha Science International Ltd, Oxford, 2006).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru