Calculation of the structure and infrared absorption spectra of hydrogen-bonded complexes of methyl formate with water
Bulychev V. P. 1, Buturlimova M. V. 1
1St. Petersburg State University, St. Petersburg, Russia
Email: v.bulychev@spbu.ru, m.buturlimova@spbu.ru

PDF
Equilibrium nuclear configurations of four heterodimers formed by the most stable cis conformer of a methyl formate molecule with a water molecule are calculated using the MP2/aug-cc-pVTZ method with the basis set superposition error taken into account. The geometrical parameters of the heterodimers, the binding energies, and the charges on atoms are determined. The frequencies and intensities for the IR absorption bands of heterodimers are calculated in the harmonic approximation and also in the anharmonic approximation with the use of the second-order perturbation theory. The strongest absorption bands of heterodimers that can be used to detect these complexes in an experiment were determined. The correlations were analyzed between the changes of geometrical parameters of monomers, charges on atoms, and shifts of vibrational frequencies arising upon formation of intermolecular hydrogen bonds. The calculated frequency shifts of vibrational absorption bands of monomers upon formation of heterodimers were compared with the data of a low-temperature experiment in solid neon. Keywords: hydrogen bond, calculations of the spectra of molecular complexes, anharmonic interactions.
  1. G.A. Blake, E.C. Sutton, C. Masson, T.G. Phillips. Ap. J. Suppl., 60 (1), 357 (1986). https://doi.org/10.1086/191090
  2. C.A. Cole, N. Wehres, Z. Yang, D.L. Thomsen, T.P. Snow, V.M. Bierbaum. Astrophys. J. Lett., 754, 6 (2012). DOI: 10.1088/2041-8205/754/1/L5
  3. J.T. van Scheltinga, G.M. Marcandalli, M.K. McClure, M.R. Hogerheijde, H. Linnartz. Astronomy and Astrophysics, A95, 651 (2021). DOI: 10.1051/0004-6361/202140723
  4. R. Sang, Zh. Wei, Yu. Hu, E. Alberico, D. Wei, X. Tian, P. Ryabchuk, A. Spannenberg, R. Razzaq, R. Jackstell, J. Massa, P. Sponholz, H. Jiao, H. Junge, M. Beller. Nature Catalysis, 6, 543 (2023). DOI: 10.1038/s41929-023-00959-8
  5. P.R. Rablen, J.W. Lockman, W.L. Jorgensen. J. Phys. Chem. A, 102, 3782-3797 (1998)
  6. S. Urata, S. Tsuzuki, T. Uchimaru, A.K. Chandra, A. Takadaa, A. Sekiyab. Phys. Chem. Chem. Phys., 4, 4902 (2002). DOI: 10.1039/b206405g
  7. E.E. Etim, P. Gorai, A. Das, S.K. Chakrabarti, E. Arunan. Adv. Space Res., 61, 2870 (2018). DOI: 10.1016/j.asr.2018.03.003
  8. L. Vanderheyden, G. Maes, Th. Zeegers-Huyskens. J. Mol. Struct., 114, 165 (1984). DOI: 10.1016/0022-2860(84)87121-5
  9. Z. Latajka, H. Ratajczak, Th. Zeegers-Huyskens. J. Mol. Struct. (Theochem.), 164 (3-4), 201 (1988). DOI: 10.1016/0166-1280(88)80145-3
  10. P. Soulard, B. Tremblay. J. Mol. Struct., 1257, 132604 (2022). DOI: 10.1016/j.molstruc.2022.132604
  11. V. Barone. J. Chem. Phys., 122 (1), 014108 (2005). DOI: 10.1063/1.1824881
  12. J. Bloino. J. Phys. Chem. A, 119 (21), 5269 (2015). DOI: 10.1021/jp509985u
  13. M.J. Frisch, G.W. Trucks, H.B. Schlegel et. al. Gaussian 16, Revision A.03 (Wallingford CT, 2016)
  14. V.P. Bulychev, M.V. Buturlimova. Opt. Spectrosc., 131 (7), 851 (2023). DOI: 10.61011/EO.2023.07.57126.5259-23
  15. V.P. Bulychev, M.V. Buturlimova. Chem. Phys., 589, 112525 (2025). DOI: 10.1016/j.chemphys.2024.112525
  16. Sh.A. Clough, Y. Beers, G.P. Klein, L.S. Rothman. J. Chem. Phys., 59, 2254 (1973). DOI: 10.1063/1.1680328
  17. Sh.L. Shostak, W.L. Ebenstein, J.S. Muenter. J. Chem. Phys., 94, 5875 (1991). DOI: 10.1063/1.460471
  18. A. Bauder. J. Phys. Chem. Ref. Data, 8 (3), 583 (1979). DOI: 10.1063/1.555604
  19. A.G. Csaszar, G. Czako, T. Furtenbacher, J. Tennyson, V. Czalay, S.V. Shirin, N.F. Zobov, O.L. Polyansky. J. Chem. Phys., 122, 214305 (2005). DOI: 10.1063/1.1924506
  20. M.L. Senent, M. Villa, F.J. Melendez, R. Dominguez-Gomez. Astrophys. J., 627 (1), 567 (2005). DOI: 10.1086/430201
  21. F. Weinhold, C.R. Landis. Valency and bonding. A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press, New York, 2005)
  22. T. Shimanouchi. Tables of Molecular Vibrational Frequencies. Consolidated Volume I (National Bureau of Standards, 1970)
  23. S. Oswald, M.A. Suhm. Phys. Chem. Chem. Phys., 21 (35), 18799 (2019). DOI: 10.1039/C9CP03651B

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru