Study of features in the behavior of optical characteristics of paired nanoparticles taking into account quantum effects
Eremin Yu.A. 1, Lopushenko V. V. 1
1Lomonosov Moscow State University, Moscow, Russia
Email: eremin@cs.msu.ru, lopushnk@cs.msu.ru

PDF
A comparative analysis of the behavior of optical characteristics of paired silver and sodium nanoparticles with a nanometer gap between them was performed using the discrete sources method. The emerging quantum effects were considered based on mesoscopic boundary conditions using the Feibelman parameters. It was found that the presence of the quantum effect in silver leads to a decrease in the plasmon resonance amplitude and its shift to the short-wavelength region, whereas for sodium particles an increase in the plasmon resonance amplitude and a shift to the long-wavelength region, which can exceed 35 nm, are observed. A study of the field intensity distribution on the particle surface at the plasmon resonance frequency showed that the maxima are achieved at the ends of the particles, and the absolute maximum is located near the gap. At the same time, at distances of about 10 nm along the particle surface, the intensity change can reach 4 orders of magnitude, which is quite significant if we consider that such a distance is only 1.5% of the radiation wavelength in the environment. Keywords: paired nanoparticles, silver and sodium, quantum effects, mesoscopic boundary conditions, Feibelman parameters, discrete sources method.
  1. J.W.M. Chon, K. Iniewski. Nanoplasmonics: Advanced Device Applications (CRC Press, Boca Raton, 2018). DOI: 10.1201/9781315216423
  2. S.J. Bauman, A.A. Darweesh, M. Furr, M. Magee, C. Argyropoulos, J.B. Herzog. ACS Appl. Mater. Interfaces, 14, 15541 (2022). DOI: 10.1021/acsami.2c01335
  3. C. Pin, S. Ishida, G. Takahashi, K. Sudo, T. Fukaminato, K. Sasaki. ACS Omega, 3 (5), 4878 (2018). DOI: 10.1021/acsomega.8b00282
  4. T. Yamamoto, H. Yamane, N. Yokoshi, H. Oka, H. Ishihara, Y. Sugawara. ACS Nano, 18 (2), 1724 (2024). DOI: 10.1021/acsnano.3c10924
  5. L. Nan, J. Giraldez-Martinez, A.`Stefancu, L. Zhu, M. Liu, A.O. Govorov, L. VazquezBesteiro, E. Cortes. NanoLett., 23 (7), 2883 (2023). DOI: 10.1021/acs.nanolett.3c00219
  6. Y. Yu, T.H. Xiao, Y.Z. Wu, W.J. Li, Q.G. Zeng, L. Long, Z.Y. Li. Adv. Photonics, 2 (1), 014002 (2020). DOI: 10.1117/1.AP.2.1.014002
  7. C.E. Garrab, M. Zekriti. Physica B: Condensed Matter, 686 (3-4), 416071 (2024). DOI: 10.1016/j.physb.2024.416071
  8. Y. Zheng, X. Song, Z. Fredj, S. Bian, M. Sawan. Anal. Chim. Acta, 1244 (4), 340860 (2023). DOI: 10.1016/j.aca.2023.340860
  9. Q. Pei, X. Zheng, J. Tan, Y. Luo, S. Ye. J. Phys. Chem. Lett., 15 (20), 5390 (2024). DOI: 10.1021/acs.jpclett.4c00964
  10. H.-H. Jeong, M.C. Adams, J.-P. Gunther. ACS Nano, 13, 11453 (2019). DOI: 10.1021/acsnano.9b04938
  11. W. Zhu, R. Esteban, A.G. Borisov, J. Baumberg, P. Nordlander, H. Lezec, J. Aizpurua, K.B. Crozier. Nat. Commun., 7 (1), 11495 (2016). DOI: 10.1038/ncomms11495
  12. C. David, F.J. Garcia de Abajo. J. Phys. Chem. C, 115 (40), 19475 (2011). DOI: 10.1021/jp204261u
  13. C. Tserkezis, W. Yan, W. Hsieh, G. Sun, J.B. Khurgin, M. Wubs, N.A. Mortensen. Int. J. Mod. Phys. B, 31 (24), 1740005 (2017). DOI: 10.1142/S0217979217400057
  14. A. Babaze, E. Ogando, P.E. Stamatopoulou, C. Tserkezis, N.A. Mortensen, J. Aizpurua, A.G. Borisov, R. Esteban. Optics Express, 30 (12), 21159 (2022). DOI: 10.1364/OE.456338
  15. P.E. Stamatopoulou, C. Tserkezis. Optical Materials Express, 12 (5), 1869 (2022). DOI: 10.1364/OME.456407
  16. N.A. Mortensen. Nanophotonics, 10 (10), 2563 (2021). DOI: 10.1515/nanoph-2021-0156
  17. M. Khalid, O. Morandi, Mallet E., P-A. Hervieux, G. Manfredi, A. Moreau, C. Ciraci. Phys. Rev. B, 104, 155435 (2021). DOI: 10.1103/PhysRevB.104.155435
  18. Yu.A. Eremin, A.G. Sveshnikov. Computat. Math. Math. Phys., 61 (4), 564 (2021). DOI: 10.1134/S0965542521040047
  19. N.V. Grishina, Yu.A. Eremin, A.G. Sveshnikov. Opt. Spectrosc., 113 (4), 440 (2012). DOI: 10.1134/S0030400X12100049
  20. Yu.A. Eremin, V.V. Lopushenko. Opt. Spectrosc., 131 (8), 1084 (2023). DOI: 10.61011/EOS.2023.08.57294.5402-23
  21. N.S. Bakhvalov, Chislennye metody (Nauka, M., 1975) (in Russian)
  22. S. Raza, S.I. Bozhevolnyi, M. Wubs, N.A. Mortensen. J. Phys.: Condens. Matter., 27, 183204 (2015). DOI: 10.1088/0953-8984/27/18/183204
  23. P.B. Johnson, R.W. Christy. Phys. Rev. B, 6, 4370 (1972). DOI: 10.1103/PhysRevB.6.4370
  24. M.H. Eriksen, C. Tserkezis, N.A. Mortensen, J.D. Cox. Nanophotonics, 13 (15), 2751 (2024). DOI: 10.1515/nanoph-2023-0575
  25. A.R. Echarri, P.A.D. Goncalves, C. Tserkezis, F.J. Garcia de Abajo, N.A. Mortensen, J.D. Cox. Optica, 8 (5), 710 (2021). DOI: 10.1364/OPTICA.412122
  26. Yu.A. Eremin, N.L. Tsitsas, M. Kouroublakis, G. Fikioris. J. Comp. Appl. Math., 417, 114556 (2023). DOI: 10.1016/j.cam.2022.114556

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru