Dispersion of Surface Plasmon-Polaritons in Metallic Single-Walled Carbon Nanotubes and Ordered Arrays Based on Them
Afanas’ev S. A.1, Zaitsev V. A.1, Moiseev S. G. 1,2, Rozhleys I. A. 1, Sannikov D. G.1
1Ulyanovsk State University, Ulyanovsk, Russia
2Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Ulyanovsk Branch, Ulyanovsk, Russia
Email: sannikov-dg@yandex.ru

PDF
Within the framework of a hydrodynamic model, the propagation of eigenwaves (surface plasmon-polaritons) in individual metallic single-walled carbon nanotubes (SWCNTs) and ordered arrays based on them is considered. Numerical analysis of the dispersion properties of surface plasmon-polaritons in the terahertz range is performed taking into account losses and the tensor nature of the surface conductivity of single-walled carbon nanotubes. Conditions are determined under which the interaction of neighboring nanotubes in the array does not affect the dispersion characteristics of surface plasmon-polaritons. It is shown that the highest values (over 100) of the slowing-down factor (the ratio of the speed of light to the phase velocity of surface plasmon-polaritons) of the fundamental mode are achieved for ordered arrays of single-walled carbon nanotubes with radii over 2 nm at frequencies around 40 THz and above. The results obtained may find practical application in compact amplifiers and terahertz radiation generators implemented on the basis of arrays of single-walled carbon nanotubes. Keywords: surface plasmon-polaritons, single-walled carbon nanotubes.
  1. G.Y. Slepyan, S.A. Maksimenko, A. Lakhtakia, O. Yevtushenko, A.V. Gusakov. Phys. Rev. B, 60 (24), 17136 (1999). DOI: 10.1103/PhysRevB.60.17136
  2. A.V. Eletskii. Physics-Uspekhi, 52 (3), 209(2009). DOI: 10.3367/UFNE.0179.200903A.0225
  3. P.N. D'yachkov, Uglerodnye nanotrubki: stroenie, svoistva, primeneniya (Binom. Laboratoriya znanij, M. 211). (in Russian)
  4. S. Rathinavel, K. Priyadharshini, D. Panda. Mater. Sci. Eng. B, 268, 115095 (2021). DOI: 10.1016/j.mseb.2021.115095
  5. M.G. Burdanova, A.P. Tsapenko, M.V. Kharlamova, E.I. Kauppinen, B.P. Gorshunov, J. Kono, J. Lloyd-Hughes. Adv. Opt. Mater., 9 (24), 2101042 (2021). DOI: 10.1002/ADOM.202101042
  6. K.G. Batrakov, O.V. Kibis, P.P. Kuzhir, M.R. da Costa, M.E. Portnoi. J. Nanophotonics, 4 (1), 041665 (2010). DOI: 10.1117/1.3436585
  7. A. Moradi. J. Electromagn. Anal. Appl., 2 (12), 672 (2010). DOI: 10.4236/JEMAA.2010.212088
  8. A. Moradi. Photonics Nanostructures --- Fundam. Appl., 11 (1), 85 (2013). DOI: 10.1016/j.photonics.2012.09.001
  9. L. Martin-Moreno, F.J.G. De Abajo, F.J. Garcia-Vidal. Phys. Rev. Lett., 115 (17), 173601 (2015). DOI: 10.1103/PHYSREVLETT.115.173601
  10. S.A. Afanas'ev, V.A. Zajcev, S.G. Moiseev, I.A. Rozhlejs, D.G. Sannikov, G.V. Tertyshnikova. Semicon., 58 (9), 467 (2024). DOI: 10.61011/SC.2024.09.59910.6326A
  11. A.S. Kadochkin, S.G. Moiseev, Y.S. Dadoenkova, V.V. Svetukhin, I.O. Zolotovskii. Opt. Express, 25 (22), 27165 (2017). DOI: 10.1364/oe.25.027165
  12. A.S. Kadochkin, S. Moiseev, Y.S. Dadoenkova, F. Bentivegna, V. Svetukhin, I.O. Zolotovsky. J. Opt., 22, 12, 125002 (2020). DOI: 10.1088/2040-8986/abb8c4
  13. V. Perebeinos, J. Tersoff, P. Avouris. Phys. Rev. Lett., 94 (8), 086802 (2005). DOI: 10.1103/PHYSREVLETT.94.086802
  14. K. Liu, J. Deslippe, F. Xiao, R.B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S.G. Louie, E. Wang, F. Wang. Nat. Nanotechnol., 7 (5), 325 (2012). DOI: 10.1038/NNANO.2012.52
  15. D.A. Svintsov, A.V. Arsenin, D.Yu. Fedyanin, A. Kriesch, S.P. Burgos, D. Ploss, H. Pfeifer, H.A. Atwater, U. Peschel, I. Vurgaftman, M. Kim, J. Meyer, A. Makinen, K. Bussmann, L. Cheng, F. Choa, J. Long, A.W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M.J. Paniccia, J.E. Bowers. Opt. Express, 23 (15), 19358 (2015). DOI: 10.1364/OE.23.019358
  16. S.G. Moiseev, Y.S. Dadoenkova, A.S. Kadochkin, A.A. Fotiadi, V.V. Svetukhin, I.O. Zolotovskii. Ann. Phys., 530 (11), 1800197 (2018). DOI: 10.1002/andp.201800197
  17. T.A. Morgado, M.G. Silveirinha. ACS Photonics, 5 (11), 4253 (2018). DOI: 10.1021/ACSPHOTONICS.8B00987
  18. S.A. Afanas'ev, A.A. Fotiadi, A.S. Kadochkin, E.P. Kitsyuk, S.G. Moiseev, D.G. Sannikov, V.V. Svetukhin, Y.P. Shaman, I.O. Zolotovskii. Photonics, 10 (12), 1317 (2023). DOI: 10.3390/PHOTONICS10121317
  19. P. Longe, S.M. Bose. Phys. Rev. B, 48 (24), 18239 (1993). DOI: 10.1201/9781351121996-7
  20. S.A. Maksimenko, G.Y. Slepyan, G.Y. Slepyan. In: Electromagnetic Fields Unconv. Struct. Mater, ed. by N. Singh Onkar, A. Lakhtakia (John Wiley \& Sons, Inc., New York, 2000), pp. 217-255
  21. A. Moradi. J. Appl. Phys., 122 (13), 133103 (2017). DOI: 10.1063/1.4997454
  22. A. Moradi, H. Khosravi. Phys. Rev. B -- Condens. Matter Mater. Phys., 76 (11), 113411 (2007). DOI: 10.1103/PHYSREVB.76.113411
  23. D.J. Mowbray, Z.L. Mivskovic, F.O. Goodman. Phys. Rev. B -- Condens. Matter Mater. Phys., 74 (19), 1 (2006). DOI: 10.1103/PhysRevB.74.195435
  24. T. Stöckli, J.M. Bonard, A. Ch\^atelain, Z.L. Wang, P. Stadelmann. Phys. Rev. B, 64 (11), 115424 (2001). DOI: 10.1103/PhysRevB.64.115424
  25. C. Yannouleas, E.N. Bogachek, U. Landman. Phys. Rev. B, 53 (15), 10225 (1996). DOI: 10.1103/PhysRevB.53.10225
  26. G. Chen, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba. Carbon N. Y., 107, 433 (2016). DOI: 10.1016/j.carbon.2016.06.024
  27. A. Moradi. Phys. Lett. Sect. A Gen. At. Solid State Phys., 372 (34), 5614 (2008). DOI: 10.1016/j.physleta.2008.06.071
  28. G. Miano, F. Villone. IEEE Trans. Antennas Propag., 54 (10), 2713 (2006). DOI: 10.1109/TAP.2006.882170
  29. A.V. Eletskii. Physics--Uspekhi, 45 (4), 369(2002). DOI: 10.1070/PU2002v045n04ABEH001033
  30. Y. Miyamoto, S.G. Louie, M.L. Cohen. Phys. Rev. Lett., 76 (12), 2121 (1996). DOI: 10.1103/PhysRevLett.76.2121
  31. R.A. Jishi, M.S. Dresselhaus, G. Dresselhaus. Phys. Rev. B, 47 (24), 16671 (1993). DOI: 10.1103/PhysRevB.47.16671

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru