Dispersion of Surface Plasmon-Polaritons in Metallic Single-Walled Carbon Nanotubes and Ordered Arrays Based on Them
Afanas’ev S. A.1, Zaitsev V. A.1, Moiseev S. G. 1,2, Rozhleys I. A. 1, Sannikov D. G.1
1Ulyanovsk State University, Ulyanovsk, Russia
2Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Ulyanovsk Branch, Ulyanovsk, Russia
Email: sannikov-dg@yandex.ru
Within the framework of a hydrodynamic model, the propagation of eigenwaves (surface plasmon-polaritons) in individual metallic single-walled carbon nanotubes (SWCNTs) and ordered arrays based on them is considered. Numerical analysis of the dispersion properties of surface plasmon-polaritons in the terahertz range is performed taking into account losses and the tensor nature of the surface conductivity of single-walled carbon nanotubes. Conditions are determined under which the interaction of neighboring nanotubes in the array does not affect the dispersion characteristics of surface plasmon-polaritons. It is shown that the highest values (over 100) of the slowing-down factor (the ratio of the speed of light to the phase velocity of surface plasmon-polaritons) of the fundamental mode are achieved for ordered arrays of single-walled carbon nanotubes with radii over 2 nm at frequencies around 40 THz and above. The results obtained may find practical application in compact amplifiers and terahertz radiation generators implemented on the basis of arrays of single-walled carbon nanotubes. Keywords: surface plasmon-polaritons, single-walled carbon nanotubes.
- G.Y. Slepyan, S.A. Maksimenko, A. Lakhtakia, O. Yevtushenko, A.V. Gusakov. Phys. Rev. B, 60 (24), 17136 (1999). DOI: 10.1103/PhysRevB.60.17136
- A.V. Eletskii. Physics-Uspekhi, 52 (3), 209(2009). DOI: 10.3367/UFNE.0179.200903A.0225
- P.N. D'yachkov, Uglerodnye nanotrubki: stroenie, svoistva, primeneniya (Binom. Laboratoriya znanij, M. 211). (in Russian)
- S. Rathinavel, K. Priyadharshini, D. Panda. Mater. Sci. Eng. B, 268, 115095 (2021). DOI: 10.1016/j.mseb.2021.115095
- M.G. Burdanova, A.P. Tsapenko, M.V. Kharlamova, E.I. Kauppinen, B.P. Gorshunov, J. Kono, J. Lloyd-Hughes. Adv. Opt. Mater., 9 (24), 2101042 (2021). DOI: 10.1002/ADOM.202101042
- K.G. Batrakov, O.V. Kibis, P.P. Kuzhir, M.R. da Costa, M.E. Portnoi. J. Nanophotonics, 4 (1), 041665 (2010). DOI: 10.1117/1.3436585
- A. Moradi. J. Electromagn. Anal. Appl., 2 (12), 672 (2010). DOI: 10.4236/JEMAA.2010.212088
- A. Moradi. Photonics Nanostructures --- Fundam. Appl., 11 (1), 85 (2013). DOI: 10.1016/j.photonics.2012.09.001
- L. Martin-Moreno, F.J.G. De Abajo, F.J. Garcia-Vidal. Phys. Rev. Lett., 115 (17), 173601 (2015). DOI: 10.1103/PHYSREVLETT.115.173601
- S.A. Afanas'ev, V.A. Zajcev, S.G. Moiseev, I.A. Rozhlejs, D.G. Sannikov, G.V. Tertyshnikova. Semicon., 58 (9), 467 (2024). DOI: 10.61011/SC.2024.09.59910.6326A
- A.S. Kadochkin, S.G. Moiseev, Y.S. Dadoenkova, V.V. Svetukhin, I.O. Zolotovskii. Opt. Express, 25 (22), 27165 (2017). DOI: 10.1364/oe.25.027165
- A.S. Kadochkin, S. Moiseev, Y.S. Dadoenkova, F. Bentivegna, V. Svetukhin, I.O. Zolotovsky. J. Opt., 22, 12, 125002 (2020). DOI: 10.1088/2040-8986/abb8c4
- V. Perebeinos, J. Tersoff, P. Avouris. Phys. Rev. Lett., 94 (8), 086802 (2005). DOI: 10.1103/PHYSREVLETT.94.086802
- K. Liu, J. Deslippe, F. Xiao, R.B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S.G. Louie, E. Wang, F. Wang. Nat. Nanotechnol., 7 (5), 325 (2012). DOI: 10.1038/NNANO.2012.52
- D.A. Svintsov, A.V. Arsenin, D.Yu. Fedyanin, A. Kriesch, S.P. Burgos, D. Ploss, H. Pfeifer, H.A. Atwater, U. Peschel, I. Vurgaftman, M. Kim, J. Meyer, A. Makinen, K. Bussmann, L. Cheng, F. Choa, J. Long, A.W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M.J. Paniccia, J.E. Bowers. Opt. Express, 23 (15), 19358 (2015). DOI: 10.1364/OE.23.019358
- S.G. Moiseev, Y.S. Dadoenkova, A.S. Kadochkin, A.A. Fotiadi, V.V. Svetukhin, I.O. Zolotovskii. Ann. Phys., 530 (11), 1800197 (2018). DOI: 10.1002/andp.201800197
- T.A. Morgado, M.G. Silveirinha. ACS Photonics, 5 (11), 4253 (2018). DOI: 10.1021/ACSPHOTONICS.8B00987
- S.A. Afanas'ev, A.A. Fotiadi, A.S. Kadochkin, E.P. Kitsyuk, S.G. Moiseev, D.G. Sannikov, V.V. Svetukhin, Y.P. Shaman, I.O. Zolotovskii. Photonics, 10 (12), 1317 (2023). DOI: 10.3390/PHOTONICS10121317
- P. Longe, S.M. Bose. Phys. Rev. B, 48 (24), 18239 (1993). DOI: 10.1201/9781351121996-7
- S.A. Maksimenko, G.Y. Slepyan, G.Y. Slepyan. In: Electromagnetic Fields Unconv. Struct. Mater, ed. by N. Singh Onkar, A. Lakhtakia (John Wiley \& Sons, Inc., New York, 2000), pp. 217-255
- A. Moradi. J. Appl. Phys., 122 (13), 133103 (2017). DOI: 10.1063/1.4997454
- A. Moradi, H. Khosravi. Phys. Rev. B -- Condens. Matter Mater. Phys., 76 (11), 113411 (2007). DOI: 10.1103/PHYSREVB.76.113411
- D.J. Mowbray, Z.L. Mivskovic, F.O. Goodman. Phys. Rev. B -- Condens. Matter Mater. Phys., 74 (19), 1 (2006). DOI: 10.1103/PhysRevB.74.195435
- T. Stöckli, J.M. Bonard, A. Ch\^atelain, Z.L. Wang, P. Stadelmann. Phys. Rev. B, 64 (11), 115424 (2001). DOI: 10.1103/PhysRevB.64.115424
- C. Yannouleas, E.N. Bogachek, U. Landman. Phys. Rev. B, 53 (15), 10225 (1996). DOI: 10.1103/PhysRevB.53.10225
- G. Chen, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba. Carbon N. Y., 107, 433 (2016). DOI: 10.1016/j.carbon.2016.06.024
- A. Moradi. Phys. Lett. Sect. A Gen. At. Solid State Phys., 372 (34), 5614 (2008). DOI: 10.1016/j.physleta.2008.06.071
- G. Miano, F. Villone. IEEE Trans. Antennas Propag., 54 (10), 2713 (2006). DOI: 10.1109/TAP.2006.882170
- A.V. Eletskii. Physics--Uspekhi, 45 (4), 369(2002). DOI: 10.1070/PU2002v045n04ABEH001033
- Y. Miyamoto, S.G. Louie, M.L. Cohen. Phys. Rev. Lett., 76 (12), 2121 (1996). DOI: 10.1103/PhysRevLett.76.2121
- R.A. Jishi, M.S. Dresselhaus, G. Dresselhaus. Phys. Rev. B, 47 (24), 16671 (1993). DOI: 10.1103/PhysRevB.47.16671
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.