Spectrum of oscillation of the array of Josephson junctions in the coplanar line
F.V. Khan1,2, L.V. Filippenko 1, M.Yu. Fominsky1, A.B. Ermakov1, A.P. Orlov 1, V.P. Koshelets1
1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: khanfv@hitech.cplire.ru

PDF
We have studied spectral characteristics of radiation of an oscillator based on the array of Josephson junctions and evaluated its applicability as a heterodyne included in the superconducting integrated receiver. The array is 350 serial junctions that are embedded into a central electrode of the coplanar line. Radiation from the array is mixed with higher synthesizer harmonics (the frequency is 16-19 GHz) that originate in a single tunnel Josephson junction (a harmonic mixer). A signal at the difference frequency (up to 800 MHz) is output to a commercial spectrum analyzer. A natural width of the oscillation line in the best point was below 1 MHz with the signal-to-noise ration of 26.3 dB. The estimates of the line width within the model that takes into account noises of Josephson junctions as well as thermal and low-frequency noises are in qualitative agreement with experimental results. Besides, we were the first to implement a phase-locked loop mode to the stable external synthesizer in all the points, where the line width does not exceed 15 MHz. Keywords: superconducting integrated receiver, heterodyne, Josephson junction, coplanar line, noises, phase-locked loop.
  1. ALMA Space observatory Website. Available online: https://www.almaobservatory.org/
  2. Apex Space Telescope Website. Available online: http://www.apex-telescope.org/
  3. Hershel Space Telescope Website. Available online: https://www.herschel.caltech.edu/
  4. "Millimetron" space observatory website. Available online: https://millimetron.ru/
  5. J.R. Tucker, M.J. Feldman. Rev. Modern Phys., 57 (4), 1055 (1985). DOI: 10.1103/RevModPhys.57.1055
  6. A.R. Kerr, M.J. Feldman, S.-K. Pan, Proceedings of the Eighth International Symposium on Space Terahertz Technology (Cambridge, MA, USA, 1997)
  7. M. Tinkham Introduction to Superconductivity, 2nd edition (McGraw-Hill, 1996), p. 77
  8. J.V. Siles, K.B. Cooper, C. Lee, R.H. Lin, G. Chattopadhyay, I. Mehdi. IEEE Trans. Terahertz Sci. Technol., 8 (6), 596 (2018)
  9. V.P. Koshelets, S.V. Shitov, A.B. Ermakov, L.V. Filippenko, O.V. Koryukin, A.V. Khudchenko, M.Yu. Torgashin, P.A. Yagoubov, R.W.M. Hoogeveen, O.M. Pylypenko. IEEE Trans. Appl. Supercond., 15 (2), 960 (2005). DOI: 10.1109/TASC.2005.850138
  10. N.V. Kinev, K.I. Rudakov, L.V. Filippenko, A.M. Baryshev, V.P. Koshelets. Sensors, 20 (24), 7267 (2020). DOI: 10.3390/s20247267
  11. K.A. Baksheeva, R.V. Ozhegov, G.N. Goltsman, N.V. Kinev, V.P. Koshelets, A. Kochnev, N. Betzalel, A. Puzenko, P.B. Ishai, Yu. Feldman. IEEE Trans. Terahertz Sci. Technol., 11 (4), 381 (2021). DOI: 10.1109/TTHZ.2021.3066099
  12. V.P. Koshelets, S.V. Shitov, A.V. Shchukin, L.V. Filippenko, J. Mygind, A.V. Ustinov. Phys. Rev. B, 56 (9), 5572 (1997). DOI: 10.1103/PhysRevB.56.5572
  13. D.D. Coon, M.D. Fiske. Phys. Rev., 138 (3A), A744 (1965). DOI: 10.1103/PhysRev.138.A744
  14. A.K. Jain, K.K. Likharev, J.E. Lukens, J.E. Sauvageau. Phys. Reports, 109 (6), 309 (1984). DOI: 10.1016/0370-1573(84)90002-4
  15. M. Darula, T. Doderer, S. Beuven. Supercond. Sci. Technol., 12 (1), R1 (1999). DOI: 10.1088/0953-2048/12/1/001
  16. M.A. Galin, I.A. Shereshevsky, N.K. Vdovicheva, V.V. Kurin. Supercond. Sci. Technol., 34 (7), 075005 (2021). DOI: 10.1088/1361-6668/abfd0b
  17. A. Kawakami, Y. Uzawa, Z. Wang. IEEE Transactions Appl. Supercond., 9 (2), 4554 (1999). DOI: 10.1109/77.784039
  18. F.V. Khan, L.V. Filippenko, A.B. Ermakov, M.E. Paramonov, M.Yu. Fominskii, N.V. Kinev, V.P. Koshelets, S.A. Nikitov. UFN, 195 (6), 621( 2025) (in Russian). DOI: 10.3367/UFNr.2024.12.039864
  19. L.V. Filippenko, S.V. Shitov, P.N. Dmitriev, A.B. Ermakov, V.P. Koshelets, J.R. Gao. IEEE Trans. Appl. Supercond., 11 (1), 816 (2001). DOI: 10.1109/77.919469
  20. V.P. Koshelets, S.V. Shitov, P.N. Dmitriev, A.B. Ermakov, L.V. Filippenko, V.V. Khodos, V.L. Vaks, A.M Baryshev, P.R. Wesselius, J. Mygind. Physica C: Superconductivity, 367 (1), 249 (2002). DOI: 10.1016/S0921-4534(01)01046-2
  21. D. Mirshekar-Syahkal, J.B. Davies. IEEE Transactions on Microwave Theory and Techniques, 27 (7), 694 (2003). DOI: 10.1109/TMTT.1979.1129703
  22. D. Rogovin, D.J. Scalapino. Annals Physics, 86 (1), 1 (1974). DOI: 10.1016/0003-4916(74)90430-8
  23. K.K. Likharev. Dynamics of Josephson junctions and circuits. (Gordon and Breach science publishers, NY., 1986), p. 98.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru