Characteristics of a superconducting single-photon detector shielded by ITO under external electric field conditions
Sedykh K. O.1,2, Suleimen Y.3,4, Svyatodukh S. S.1,3, Zarutskiy S. Yu.4, Podlesnyy A. S.4, Golikov A. D.2,3, Florya I. N.2, Kovalyuk V. V.1,2, Lakhmanskiy K. E.4, Goltsman G. N.1,4
1National Research University Higher School of Economics, Moscow, Russia
2National University of Science and Technology MISiS, Moscow, Russia
3Moscow Pedagogical State University, Moscow, Russia
4Russian Quantum Center, Moscow, Russia
Email: ksedykh@hse.ru

PDF
In this work, a model of a surface ion trap with radio-frequency (RF) electrodes and a superconducting single-photon detector made of niobium nitride shielded by indium-tin oxide (ITO) at a temperature of 2.2 K was investigated. The amplitude of the radio-frequency signal supplied to the electrodes varied within 0.01-2 V at frequencies of 5-35 MHz. The results of the dependence of the dark count rate and detection efficiency of the single-photon detector on the induced external RF- field with a shielded ITO coating are presented. Keywords: surface ion trap, superconducting single-photon detector, niobium nitride (NbN), shielding, indium tin oxide (ITO), scalable ion quantum computer.
  1. M. Kjaergaard, M.E. Schwartz, J. Braumuller, Ph. Krantz, J. I.-J. Wang, S. Gustavsson, W.D. Oliver. Annu. Rev. Condens. Matter Phys., 11, 369 (2020). DOI: 10.1146/annurev-conmatphys-031119-050605
  2. T. Heindel, J.-H. Kim, N. Gregersen, A. Rastelli, S. Reitzenstein. Opt. Photonics, 15 (3), 613 (2023). DOI: 10.1364/AOP.490091
  3. T. Iwai, K. Kawaguchi, T. Miyatake, T. Ishiguro, S. Miyahara, Y. Doi, S. Nur, R. Ishihara, S. Sato. Proceed. IEEE 73rd Electronic Components and Technology Conference (ECTC), 967 (2023). DOI: 10.1109/ECTC51909.2023.00165
  4. J.M. Pino, J.M. Dreiling, C. Figgatt, J.P. Gaebler, S.A. Moses, M.S. Allman, C.H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, B. Neyenhuis. Nature, 592, 209 (2021). DOI: 10.1038/s41586-021-03318-4
  5. C.D. Bruzewicz, J. Chiaverini, R. McConnell, J.M. Sage. Appl. Phys. Rev., 6 (2), 021314 (2019). DOI: 10.1063/1.5088164
  6. A.H. Myerson, D.J. Szwer, S.C. Webster, D.T.C. Allcock, M.J. Curtis, G. Imreh, J.A. Sherman, D.N. Stacey, A.M. Steane, D.M. Lucas. Phys. Rev. Lett., 100, 200502 (2008). DOI: 10.1103/PhysRevLett.100.200502
  7. R.J. Hendricks, J.L. Srensen, C. Champenois, M. Knoop, M. Drewsen. Phys. Rev. A, 77, 02140 (2008). DOI: 10.1103/PhysRevA.77.021401
  8. W.J. Setzer, M. Ivory, O. Slobodyan, J.W. Van Der Wall, L.P. Parazzoli, D. Stick, M. Gehl, M.G. Blain, R.R. Kay, H.J. McGuinness. Appl. Phys. Lett., 119, 154002 (2021). DOI: 10.1063/5.0055999
  9. G.N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Appl. Phys. Lett., 79 (6), 705 (2001). DOI: 10.1063/1.1388868
  10. S.L. Todaro, V.B. Verma, K.C. McCormick, D.T.C. Allcock, R.P. Mirin, D.J. Wineland, S.W. Nam, A.C. Wilson, D. Leibfried, D.H. Slichter. Phys. Rev. Lett., 126 (1), 010501 (2021). DOI: 10.1103/PhysRevLett.126.010501
  11. B. Hampel, D.H. Slichter, D. Leibfried, R.P. Mirin, S.W. Nam, V.B. Verma. Appl. Phys. Lett., 122 (17), 174001 (2023). DOI: 10.1063/5.0145077
  12. K.O. Sedykh, Y. Suleimen, M.I. Svyatodukh, A. Podlesnyy, V.V. Kovalyuk, P.P. An, N.S. Kaurova, I.N. Florya, K.E. Lakhmanskiy, G.N. Goltsman. Tech. Phys., 68 (7), 908 (2023). DOI: 10.61011/TP.2023.07.56637.88-23
  13. K. Smirnov, A. Divochiy, Yu. Vakhtomin, P. Morozov, Ph. Zolotov, A. Antipov, V. Seleznev. Supercond. Sci. Technol., 31, 035011 (2018). DOI: 10.1088/1361-6668/aaa7aa
  14. Electronic source. Available at: https://www.lesker.com/newweb/deposition_materials/ depositionmaterials_sputtertargets_1.cfm?pgid=in3
  15. R. Blatt, H. Haffner, C.F. Roos, C. Becher, F. Schmidt-Kaler. Quantum. Inf. Process., 3, 61 (2004). DOI: 10.1007/s11128-004-3105-1
  16. Y. Pan, H. Zhou, X. Zhang, H. Yu, L. Zhang, M. Si, H. Li, L. You, Z. Wang. Opt. Express, 30 (22), 40044 (2022). DOI: 10.1364/OE.472378
  17. P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang, K. Kim. Nat. Commun., 12, 233 (2021). DOI: 10.1038/s41467-020-20330-w
  18. S. Jain, T. Sagesser, P. Hrmo, C. Torkzaban, M. Stadler, R. Oswald, C. Axline, A. Bautista-Salvador, C. Ospelkaus, D. Kienzler, J. Home. Nature, 627, 510 (2024). DOI: 10.1038/s41586-024-07111-x
  19. T. Polakovic, W.R. Armstrong, V. Yefremenko, J.E. Pearson, K. Hafidi, G. Karapetrov, Z.-E. Meziani, V. Novosad. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 959, 163543 (2020). DOI: 10.1016/j.nima.2020.163543

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru