Prospects of Sensors Using RFTES Technology for Superconducting Quantum Circuits
S.V. Shitov 1,2, N.Yu. Rudenko 1, V.I. Chichkov 1
1National University of Science and Technology MISiS, Moscow, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: Sergey3e@gmail.com
The article discusses the prospects for advancing the detector RFTES technology, which uses the principle of high-frequency heating of a superconducting absorber in a microwave resonator for dispersive reading of the state of superconducting qubits in the frequency range of 1-8 GHz. The compatibility analysis of the technology and circuitry of the qubit and RFTES detector required for the integration of such detectors on a single chip, as well as the required levels of sensitivity and suppression of the detector's backaction on the qubit, is carried out. The study showed that the existing level of RFTES technology already allows for the implementation of dispersive reading of a superconducting resonator with Q = 1000, which contains 10 photons at frequency 7 GHz, with a measurement rate of about 10 μs. The research shows that it is possible to suppress the feedback of the detector by approximately ~ 140 dB at the detector pumping frequency and by approximately ~ 90 dB at the qubit excitation frequency that might satisfy the conditions of their compatibility within a single microchip. Keywords: direct detector, RFTES, superconducting qubit, dispersive reading, superconducting resonator, superconducting transition, superconducting microbridge, hafnium film, hot electron gas, RF superconductivity.
- S.V. Shitov. Pis'ma v ZhTF, 37 (19), 88 (2011) (in Russian). DOI: 10.21883/PJTF.2021.24.51791.18897
- A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022). (in Russian) DOI: 10.21883/FTT.2022.10.53081.50HHC
- S.V. Shitov, T.M. Kim, L. S. Solomatov, N.Y. Rudenko, A.V. Merenkov, A.B. Ermakov, V.I. Chichkov. ZhTF, 94 (7), 1060 (2024) (in Russian). DOI: 10.61011/JTF.2024.07.58341.168-24
- J. Govenius, R.E. Lake, K.Y. Tan, M. Mottonen. Phys. Rev. Lett., 117, 030802 (2016). DOI: 10.1103/PhysRevLett.117.030802
- A.M. Gunyho, S. Kundu, J. Ma, W. Liu, S. Niemela, G. Catto, V. Vadimov, V. Vesterinen, P. Singh, Q. Chen, M. Mottonen. Nature Electron., 7, 288 (2024). DOI: 10.1038/s41928-024-01147-7
- P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas. Nature, 425, 817 (2003). DOI: 10.1038/nature02037
- T.M. Kim, S.V. Shitov. Pis'ma v ZhTF, 47 (24), 13 (2021). (in Russian) DOI: 10.21883/PJTF.2021.24.51791.18897
- T.M. Kim, A.V. Merenkov, A.B. Ermakov, L.S. Solomatov, V.I. Chichkov, S.V. Shitov. ZhTF, 93 (7), 995 (2023). (in Russian). DOI: 10.21883/JTF.2023.07.55759.117-23
- S.V. Shitov. Patent RU 2,801,920 C1 Russian Federation, MPC H01L 23/00 (2006.01). No2022134754: application 12/28/2022: published 08/18/2023
- S.V. Shitov, N.Yu. Rudenko, E.R. Khan. Sverhprovodyashchij SVCh detektor prohodyashchej moshchnosti (Zayavka na izobretenie. Data registracii FIPS: 07.02.2025)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.