E.R. Khan1, N.Yu. Rudenko1, V. I. Chichkov1, S.V. Shitov1,2
1National University of Science and Technology MISiS, Moscow, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: inlovewithfaraday@gmail.com
This paper describes the development and experimental study of an original superconducting microwave (MW) throughput signal detector based on RFTES technology, designed for measuring ultra-weak signals in the microwave frequency range from 1 to 40 GHz and potentially beyond. The device utilizes thin-film superconducting microbridges operating near their critical temperature, enabling high sensitivity to throughput signal power at levels of the order of 10-13 W and an insertion loss of less than -30 dB. The detector is implemented as a planar integrated structure, making it suitable for cryogenic applications, including integration into superconducting quantum devices such as qubits, parametric amplifiers, and frequency mixers. Key advantages of the detector include its broad operational frequency range and compatibility with complex superconducting circuits. The paper presents details on the device's structure, fabrication parameters, and preliminary results of the experimental study of the detector based on niobium and hafnium thin films. The comparison of simulated and measured S-parameters of experimental samples at frequencies of most interest around 1.5 and 7 GHz, at temperatures around 100 mK, are provided. Keywords: RFTES bolometer, superconducting resonator, integrated planar structure.
- T.M. Lanting, H.-M. Cho, J. Clarke, M. Dobbs, A.T. Lee, P.L. Richards, H. Spieler, A. Smith. SPIE, 4855, 172 (2003). DOI: 10.1117/12.459672
- J.J.A. Baselmans, J. Bueno, S.J.C. Yates, O. Yurduseven, N. Llombart, K. Karatsu, A.M. Baryshev, L. Ferrari, A. Endo, D.J. Thoen, P.J. de Visser1, R.M.J. Janssen, V. Murugesan, E.F.C. Driessen, G. Coiffard, J. Martin-Pintado, P. Hargrave, M. Griffin. Astronomy \& Astrophysics, 601, A89 (2017). DOI: 10.1051/0004-6361/201629653
- B.S. Karasik, A.V. Sergeev, D.E. Prober. IEEE Transactions on Terahertz Sci. Technol., 1 (1), 97 (2011). DOI: 10.1109/TTHZ.2011.2159560
- V.P. Koshelets, S.V. Shitov. Supercond. Sci. Technol., 13 (5), R53 (2000). DOI: 10.1088/0953-2048/13/5/201
- A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022) (in Russian). DOI: 10.21883/FTT.2022.10.53081.50HHC
- A.M. Gunyho, S. Kundu, J. Ma, W. Liu, S. Niemela, G. Catto, V. Vadimov, V. Vesterinen, P. Singh, Q. Chen, M. Mottonen. Nature Electron., 7 (4), 288 (2024). DOI: 10.1038/s41928-024-01147-7
- A. Opremcak, I.V. Pechenezhskiy, C. Howington, B.G. Christensen, M.A. Beck, E. Leonard Jr., J. Suttle, C. Wilen, K.N. Nesterov, G.J. Ribeill, T. Thorbeck, F. Schlenker, M.G. Vavilov, B.L.T. Plourde, R. McDermott. Science, 361 (6408), 1239 (2018). DOI: 10.1126/science.aat4625
- L. Bisigello, S.J.C. Yates, L. Ferrari, J.J.A. Baselmans, A. Baryshev. SPIE, 9914, 913 (2016). DOI: 10.1117/12.2238643
- M. De Lucia, G. Ulbricht, E. Baldwin, J.D. Piercy, O. Creaner, C. Bracken, T.P. Ray. AIP Adv., 13 (12), (2023). DOI: 10.1063/5.0168365
- M. De Lucia, P. Dal Bo, E. Di Giorgi, T. Lari, C. Puglia, F. Paolucci. Instruments, 8 (4), 47 (2024). DOI: 10.3390/instruments8040047
- A.S. Zagorodny. Izmeriteli moshchnosti signalov SVCH i KVCH diapazonov na osnove diodnyh detektorov (Avtoref. kand. diss., TUSUR, Tomsk, 2014) (in Russian). https://rusneb.ru/catalog/000199_000009_005556707/
- S.V. Shitov, T.M. Kim, L.S. Solomatov, N.Yu. Rudenko, A.V. Merenkov, An.B. Ermakov, V.I. Chichkov. Technical Physics, 69 (7), 987 (2024). DOI: 10.61011/TP.2024.07.58802.168-24
- A.V. Merenkov, V.I. Chichkov, A.B. Ermakov, A.V. Ustinov, S.V. Shitov. IEEE Transactions on Appl. Superconduct., 28 (7), 1 (2018). DOI: 10.1109/TASC.2018.2827981
- M.E. Gershenson, D. Gong, T. Sato, B.S. Karasik, A.V. Sergeev. Appl. Phys. Lett., 79 (13), 2049 (2001). DOI: 10.1063/1.1407302
- A.I. Kurnosov, V.V. Yudin. Tekhnologiya proizvodstva poluprovodnikovyh priborov i integral'nyh mikroskhem (Vysshaya shkola, M., 1986) (in Russian)
- Cadence AWR Microwave Office https://www.awr.com/awr-software/products/awr-design-environment
- P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppakangas, V.P. Koshelets, A.V. Ustinov. Nature Commun.0, 5 (1), 3730 (2014). DOI: 10.1038/ncomms4730
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.