Superconducting RF Passing Power Detector (SPPD)
E.R. Khan1, N.Yu. Rudenko1, V. I. Chichkov1, S.V. Shitov1,2
1National University of Science and Technology MISiS, Moscow, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: inlovewithfaraday@gmail.com

PDF
This paper describes the development and experimental study of an original superconducting microwave (MW) throughput signal detector based on RFTES technology, designed for measuring ultra-weak signals in the microwave frequency range from 1 to 40 GHz and potentially beyond. The device utilizes thin-film superconducting microbridges operating near their critical temperature, enabling high sensitivity to throughput signal power at levels of the order of 10-13 W and an insertion loss of less than -30 dB. The detector is implemented as a planar integrated structure, making it suitable for cryogenic applications, including integration into superconducting quantum devices such as qubits, parametric amplifiers, and frequency mixers. Key advantages of the detector include its broad operational frequency range and compatibility with complex superconducting circuits. The paper presents details on the device's structure, fabrication parameters, and preliminary results of the experimental study of the detector based on niobium and hafnium thin films. The comparison of simulated and measured S-parameters of experimental samples at frequencies of most interest around 1.5 and 7 GHz, at temperatures around 100 mK, are provided. Keywords: RFTES bolometer, superconducting resonator, integrated planar structure.
  1. T.M. Lanting, H.-M. Cho, J. Clarke, M. Dobbs, A.T. Lee, P.L. Richards, H. Spieler, A. Smith. SPIE, 4855, 172 (2003). DOI: 10.1117/12.459672
  2. J.J.A. Baselmans, J. Bueno, S.J.C. Yates, O. Yurduseven, N. Llombart, K. Karatsu, A.M. Baryshev, L. Ferrari, A. Endo, D.J. Thoen, P.J. de Visser1, R.M.J. Janssen, V. Murugesan, E.F.C. Driessen, G. Coiffard, J. Martin-Pintado, P. Hargrave, M. Griffin. Astronomy \& Astrophysics, 601, A89 (2017). DOI: 10.1051/0004-6361/201629653
  3. B.S. Karasik, A.V. Sergeev, D.E. Prober. IEEE Transactions on Terahertz Sci. Technol., 1 (1), 97 (2011). DOI: 10.1109/TTHZ.2011.2159560
  4. V.P. Koshelets, S.V. Shitov. Supercond. Sci. Technol., 13 (5), R53 (2000). DOI: 10.1088/0953-2048/13/5/201
  5. A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022) (in Russian). DOI: 10.21883/FTT.2022.10.53081.50HHC
  6. A.M. Gunyho, S. Kundu, J. Ma, W. Liu, S. Niemela, G. Catto, V. Vadimov, V. Vesterinen, P. Singh, Q. Chen, M. Mottonen. Nature Electron., 7 (4), 288 (2024). DOI: 10.1038/s41928-024-01147-7
  7. A. Opremcak, I.V. Pechenezhskiy, C. Howington, B.G. Christensen, M.A. Beck, E. Leonard Jr., J. Suttle, C. Wilen, K.N. Nesterov, G.J. Ribeill, T. Thorbeck, F. Schlenker, M.G. Vavilov, B.L.T. Plourde, R. McDermott. Science, 361 (6408), 1239 (2018). DOI: 10.1126/science.aat4625
  8. L. Bisigello, S.J.C. Yates, L. Ferrari, J.J.A. Baselmans, A. Baryshev. SPIE, 9914, 913 (2016). DOI: 10.1117/12.2238643
  9. M. De Lucia, G. Ulbricht, E. Baldwin, J.D. Piercy, O. Creaner, C. Bracken, T.P. Ray. AIP Adv., 13 (12), (2023). DOI: 10.1063/5.0168365
  10. M. De Lucia, P. Dal Bo, E. Di Giorgi, T. Lari, C. Puglia, F. Paolucci. Instruments, 8 (4), 47 (2024). DOI: 10.3390/instruments8040047
  11. A.S. Zagorodny. Izmeriteli moshchnosti signalov SVCH i KVCH diapazonov na osnove diodnyh detektorov (Avtoref. kand. diss., TUSUR, Tomsk, 2014) (in Russian). https://rusneb.ru/catalog/000199_000009_005556707/
  12. S.V. Shitov, T.M. Kim, L.S. Solomatov, N.Yu. Rudenko, A.V. Merenkov, An.B. Ermakov, V.I. Chichkov. Technical Physics, 69 (7), 987 (2024). DOI: 10.61011/TP.2024.07.58802.168-24
  13. A.V. Merenkov, V.I. Chichkov, A.B. Ermakov, A.V. Ustinov, S.V. Shitov. IEEE Transactions on Appl. Superconduct., 28 (7), 1 (2018). DOI: 10.1109/TASC.2018.2827981
  14. M.E. Gershenson, D. Gong, T. Sato, B.S. Karasik, A.V. Sergeev. Appl. Phys. Lett., 79 (13), 2049 (2001). DOI: 10.1063/1.1407302
  15. A.I. Kurnosov, V.V. Yudin. Tekhnologiya proizvodstva poluprovodnikovyh priborov i integral'nyh mikroskhem (Vysshaya shkola, M., 1986) (in Russian)
  16. Cadence AWR Microwave Office https://www.awr.com/awr-software/products/awr-design-environment
  17. P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppakangas, V.P. Koshelets, A.V. Ustinov. Nature Commun.0, 5 (1), 3730 (2014). DOI: 10.1038/ncomms4730

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru