Thermometers based on NIS junctions of temperature range 1.5-9.0 K
Markina M. A.1,2, Tarasov M. A.1, Yusupov R. A.1, Khan F. V.1,3, Fominskiy M. Yu.1, Kozulin R.К.1, Chekushkin A. M.1
1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2National Research University Higher School of Economics, Moscow, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: markina_ma@hitech.cplire.ru

PDF
The paper presents a study of structures based on tunnelling transitions of normal metal-insulator-superconductor (NIS) Al/AlOx/Nb and Al/AlN/NbN, in which the role of superconductor is performed by niobium (Nb) or niobium nitride (NbN), which are able to operate as thermometers in the temperature range of 1.5-10 K. SNEAP (Selective Niobium Etching and Anodisation Process) technology was used to form tunnel transitions. The Rd/Rn(T) dependences of the test samples were obtained; the experimental data agree with the theoretical model. The values of fluctuation sensitivity of the order of 1 μK/sqrt(Hz)sqrt close to the theoretically expected values have been measured. Normal metal-insulator-superconductor (NIS) and superconductor-insulator-normal metal-insulator-superconductor (SINIS) structures made of Al and Nb or Al and NbN can be used as on-chip thermometers. Bolometers, electronic cooling systems and on-chip thermometers can be developed based on the studied structures, integrated directly into or placed next to the working structures for precise monitoring of thermal effects. Keywords: tunnel junction, thermometer, normal metal-insulator-superconductor (NIS), chains of NIS contacts, SNEAP (Selective Niobium Etching and Anodisation Process), fluctuation sensitivity.
  1. H. Preston-Thomas. Metrologia, 27 (1), 3 (1990)
  2. A.H. Woodcock. Canad. J. Res. 16 (7), 133 (1938)
  3. R.A. Webb, R.P. Giffard, J.C. Wheatley. J. Low. Temp. Phys., 13, 383 (1973)
  4. J. Engert, J. Beyer, D. Drung, A. Kirste, M. Peters. Intern. J. Thermophys., 28, 1800 (2007). https://doi.org/10.1007/s10765-007-0269-9
  5. J. Qu, S. Benz, H. Rogalla, W.L. Tew, D.M. White, K.L. Zhou. Measurement Sci. Technol., 30 (11), 112001 (2019). DOI: 10.1088/1361-6501/ab3526
  6. P.M. Berglund, H.K. Collan, G.J. Ehnholm, R.G. Gylling, O.V. Lounasmaa. J. Low. Temp. Phys., 6, 357 (1972). https://doi.org/10.1007/BF00628318
  7. T.H. Herder, R.O. Olson, J.S. Blakemore. Rev. Sci. Instrum. 37 (10), 1301 (1966). https://doi.org/10.1063/1.1719964
  8. M. Nahum, J.M. Martinis, S. Castles. J. Low. Temp. Phys., 93, 733 (1993). https://doi.org/10.1007/BF00693504
  9. J. Mees, M. Nahum, P.L. Richards. Appl. Phys. Lett., 59, 2329 (1991)
  10. H. Pothier, S. Gueron, N.O. Birge, D. Esteve, M.H. Devoret. Z. Phys. B, 104, 178 (1997)
  11. M. Nahum, T.M. Eiles, J.M. Martinis. Appl. Phys. Lett., 65, 3123 (1994)
  12. R.A. Webb, R.P. Giffard, J.C. Wheatley. J. Low. Temp. Phys., 13, 383 (1973)
  13. B. Karimi, Y.C. Chang, J.P. Pekola. J. Low. Temp. Phys., 207, 220 (2022)
  14. D. Chouvaev, L. Kuzmin, M. Tarasov. Supercond. Sci. Technol., 12, 985 (1999)
  15. D. Golubev, L. Kuzmin. J. Appl. Phys., 89 (11), 6464 (2001)
  16. M. Markina, A. Chekushkin, M. Tarasov. ZhTF, 94 (7), 1079 (2024) (in Russian)
  17. M. Tarasov, A. Gunbina, A. Chekushkin, R. Yusupov, V. Edelman, V. Koshelets. Appl. Sci., 12 (20), 10525 (2022). DOI: 10.3390/app122010525

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru