Non-empirical analysis of isotopic shifts and resonance effects in the infrared high-resolution spectrum of freon-22 (CHF2Cl), enriched with 13C
Krasnoshchekov S.V.
1, Gainullin I.K.
2, Laptev V.B.
3, Klimin S.A.
31Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
2Moscow State University, Moscow, Russia
3Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
Email: sergeyk@phys.chem.msu.ru, ivan.gainullin@gmail.com, laptev@isan.troitsk.ru, klimin@isan.troitsk.ru
The IR transmittance spectrum of an isotopic mixture of chlorodifluoromethane (CHF2Cl, Freon-22) with a 33% fraction of 13C and a natural ratio of chlorine isotopes was measured in the frequency range 1400-740 cm-1 with a resolution of 0.001 cm-1 at a temperature of 20oC. An ab initio calculation of the structure and sextic potential energy surface and surfaces of the components of the dipole moment has been carried out by the the electronic quantum-mechanical method of Moller-Plesset, MP2/cc-pVTZ. Then the potential was optimized by replacing the harmonic frequencies with the frequencies calculated by the electronic method of coupled clusters, CCSD(T)/aug-cc-pVQZ. The fundamental and combination frequencies were calculated using the operator perturbation theory of Van Vleck (CVPTn) of the second and fourth order (n=2,4). Resonance effects were modeled using an additional variational calculation in the basis up to fourfold VCI excitation (4). The average prediction error for the fundamental frequencies of the 12C isotopologues was ~ 1.5 cm-1. The achieved accuracy made it possible to reliably predict the isotopic frequency shifts of the 13C isotopologues. It is shown that the strong Fermi resonance ν4/2ν6 dominates in the 12C isotopologues and is practically absent in 13C. The literature assumption [Spectrochim. Acta A, 44 : 553] about the splitting of ν1 (CH) due to the resonance ν1/ν2+ν7+ν9 is confirmed. The coefficients of the polyadic quantum number are determined. The analysis made it possible to carry out a preliminary identification of the centers of the vibrational-rotational bands of isotopologues 13CHF235Cl and 13CHF237Cl in the spectrum of the mixture in preparation for individual analyzes of the vibrational-rotational structures of individual vibrational transitions. Keywords: Chlorodifluoromethane, high-resolution spectrum, Fermi resonance, operator perturbation theory, hybrid potential energy surface.
- N. Ishikawa, Y. Kobayashi. Fluorine compounds --- chemistry and application (Kodansha Scientific, Tokyo, 1979); [N. Ishikawa, Y. Kobayashi. Fluorine compounds --- chemistry and application (Mir, Moskva, 1982)]
- A. Goldman, F.J. Murcray, R.D. Blatherwick, F.S. Bonomo, F.H. Murcray, D.G. Murcray. Geophys. Res. Lett., 8 (9), 1012 (1981). DOI: 10.1029/GL008i009p01012
- M.A.K. Khalil \& R.A. Rasmussen. Nature, 292, 823 (1981). DOI: 10.1038/292823a0
- C.P. Rinsland, D.W. Johnson, A. Goldman, J.S. Levine. Nature, 337, 535 (1989). DOI:10.1038/337535a0
- Global Ozone Research and Monitoring Project N 16, "Atmospheric Ozone". World Meteorological Organization, Geneva. 1985
- R. Zander, E. Mahieu, Ph. Demoulin, C.P. Rinsland, D.K. Weisenstein, M.K.W. Ko, N.D. Sze, M.R. Gunson. J. Atmos. Chem., 18 (2), 129 (1994). DOI: 10.1007/BF00696811
- C.P. Rinsland, A. Goldman, F.J. Murcray, R.D. Blatherwick, J.J. Kosters, D.G. Murcray, N.D. Sze, S.T. Massie. J. Geophys. Res., 95 (D10), 16477 (1990). DOI: 10.1029/JD095iD10p16477
- P.C. Kruger, P. Fabian. Ber. Bunsenges. Phys. Chem., 90 (11), 1062 (1986). DOI: 10.1002/bbpc.19860901126
- D.T. Cramb, Y. Bos, H.M. Jemson, M.C.L. Gerry, C.J. Marsden. J. Mol. Struct., 190, 387 (1988). DOI: 10.1016/0022-2860(88)80298-9
- Z. Kisiel, L. Pszczolkowski, G. Cazzoli, G. Cotti. J. Mol. Spectrosc., 173 (2), 477 (1995). DOI: 10.1006/jmsp.1995.1250
- S. Blanco, A. Lesarri, J.C. Lopez, J.L. Alonso, A. Guarnieri. Z. fur Naturforsch. A, 51 (1-2), 129 (1996). DOI: 10.1515/zna-1996-1-219
- N. Vogt, J. Demaison, H.D. Rudolph. Mol. Phys., 112 (22), 2873 (2014). DOI: 10.1080/00268976.2014.915067
- E.K. Plyler, W.S. Benedict. J. Res. Nat. Bur. Stand., 47 (3), 202 (1951). DOI: 10.6028/jres.047.026
- J.G. McLaughlin, M. Poliakoff, J.J. Turner. J. Mol. Struct., 82 (1-2), 51 (1982). DOI: 10.1016/0022-2860(82)85233-2
- F. Ito. Chem. Phys., 369 (2-3), 82 (2010). DOI: 10.1016/j.chemphys.2010.02.020
- W. Holzer, H. Moser. J. Mol. Spectrosc., 20 (2), 188 (1966). DOI: 10.1016/0022-2852(66)90053-1
- A. Melchior, I. Bar, S. Rosenwaks. J. Phys. Chem. A, 102 (37), 7273 (1998). DOI: 10.1021/jp982311q
- G. Glockler, J.H. Bachmann. Phys. Rev., 55 (7), 669 (1939). DOI:10.1103/PhysRev.55.669
- G. Glockler, G.R. Leader. J. Chem. Phys., 8 (9), 699 (1940). DOI: 10.1063/1.1750740
- J.H. Lefebvre, A. Anderson. J. Raman Spectrosc., 23 (5) 243 (1992). DOI: 10.1002/jrs.1250230502
- Y.H. Wu, M. Onomichi, S. Sasaki, H. Shimizu. J. Raman Spectrosc., 24 (12), 845 (1993). DOI: 10.1002/jrs.1250241205
- A. Anderson, A.J. Beardsall, J.M. Fraser. Phys. Stat. Sol. (b), 182 (1), 59 (1994). DOI: 10.1002/pssb.2221820106
- A. Brown, D.C. McKean, J.L. Duncan. Spectrochim. Acta A., 44 (6), 553 (1988). DOI: 10.1016/0584-8539(88)80108-9
- P. Palmieri, R. Tarroni, M.M. Huhn, N.C. Handy, A. Willetts. Chem. Phys., 190 (2-3), 327 (1995). DOI: 10.1016/0301-0104(94)00316-3
- G.M. Kuramshina, F. Weinhold, I.V. Kochikov, A.G. Yagola, Yu.A. Pentin. J. Chem. Phys., 100 (2), 1414 (1994). DOI: 10.1063/1.466619
- J.V. Magill, K.M. Gough, W.F. Murphy. Spectrochim. Acta A., 42 (6), 705 (1986). DOI:10.1016/0584-8539(86)80088-5
- A. Amrein, D. Luckhaus, F. Merkt, M. Quack. Chem. Phys. Lett., 152 (4-5), 275 (1988). DOI: 10.1016/0009-2614(88)80092-7
- A.J. Ross, A. Amrein, D. Luckhaus, M. Quack. Mol. Phys., 66 (6), 1273 (1989). DOI:10.1080/00268978900100871
- D. Luckhaus, M. Quack. Mol. Phys., 68 (3), 745 (1989). DOI: 10.1080/00268978900102511
- A. Gambi, P. Stoppa, S. Giorgianni, A. de Lorenzi, R. Visinoni, S. Ghersetti. J. Mol. Spectrosc., 145 (1), 29 (1991). DOI:10.1016/0022-2852(91)90348-E
- G. Klatt, G. Graner, S. Klee, G. Mellau, Z. Kisiel, L. Pszczo kowski, J.L. Alonso, J.C. Lopez. J. Mol. Spectrosc., 178 (1), 108 (1996). DOI: 10.1006/jmsp.1996.0163
- G.T. Fraser, J. Domenech, M.-L. Junttila, A.S. Pine. J. Mol. Spectrosc., 152 (2), 307 (1992). DOI: 10.1016/0022-2852(92)90071-U
- I. Merke, G. Graner, S. Klee, G. Mellau, O. Polanz. J. Mol. Spectrosc., 173 (2), 463 (1995). DOI: 10.1006/jmsp.1995.1249
- Z. Kisiel, J.L. Alonso, S. Blanco, G. Cazzoli, J.M. Colmont, G. Cotti, G. Graner, J.C. Lopez, I. Merke, L. Pszczo kowski, J. Mol. Sp ectrosc., 184 (1), 150 (1997). DOI: 10.1006/jmsp.1997.7304
- M. Snels, G. D'Amico. J. Mol. Spectrosc., 209 (1), 1 (2001). DOI: 10.1006/jmsp.2001.8403
- C.D. Thompson, E.G. Robertson, D. McNaughton. Chem. Phys., 279 (2-3), 239 (2002). DOI: 10.1016/S0301-0104(02)00454-8
- C.D. Thompson, E.G. Robertson, D. McNaughton. Phys. Chem. Chem. Phys., 5 (10), 1996 (2003). DOI: 10.1039/B300689A
- S. Albert, H. Hollenstein, M. Quack, M. Willeke. Mol. Phys., 102 (14-15), 1671 (2004). DOI: 10.1080/00268970412331290643
- C.D. Thompson, E.G. Robertson, D. McNaughton. Mol. Phys., 102 (14-15), 1687 (2004). DOI: 10.1080/00268970410001725785
- S. Albert, H. Hollenstein, M. Quack, M. Willeke. Mol. Phys., 104 (16-17), 2719 (2006). DOI:10.1080/00268970600828991
- S. Albert, A.K. Keppler, H. Hollenstein, T.C. Manca, M. Quack. Handbook of High-Resolution Spectroscopy, ed. by M. Quack, F. Merkt (Wiley, Chichester, 2011) V. 1. Ch. 3. P. 117-173. DOI: 10.1002/9780470749593
- M. Gauthier, G.G. Cureton, P.A. Hackett, C. Willis. Appl. Phys. B., 28 (1), 43 (1982). DOI: 10.1007/BF00693891
- A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hackett. Appl. Phys. B., 36 (2), 63 (1985). DOI: 10.1007/BF00694692
- P. Ma, K. Sugita, S. Arai. Appl. Phys. B., 50 (5), 385 (1990). DOI: 10.1007/BF00325091
- V.N. Lokhman, G.N. Makarov, E.A. Ryabov, M.V. Sotnikov. Kvant. elektron., 23 (1), 81 (1996) (in Russian)
- W. Fub, J. Gothel, M. Ivanenko, K.L. Kompa, W.E. Schmid. Z. fur Phys. D., 24, 47 (1992). DOI:10.1007/BF01436603
- V.Yu. Baranov, A.P. Dyad'kin, D.D. Malyuta, V.A. Kuzmenko, S.V. Pigilsky, V.S. Mezhevov, V.S. Letokhov, V.B. Laptev, E.A. Ryabov, I.V. Yarovoy, V.B. Zarin, A.S. Podoryashy. Proc. of SPIE., 4165, 314 (2000). DOI: 10.1117/12.394137
- Izotopy: svoystva, poluchenie, primenenie, T. 1. Pod red. Baranova V.Yu. (Fizmatlit, Moskva, 2005), Razd. 8.4. P. 460 (in Russian)
- R.I. Martinez, J.T. Herron. Chem. Phys. Lett., 84 (1), 180 (1981). DOI: 10.1016/0009-2614(81)85396-1
- A. Melchior, P. Knupfer, I. Bar, S. Rosenwaks, T. Laurent, H.-R. Volpp, J. Wolfrum. J. Phys. Chem., 100 (32), 13375 (1996). DOI: 10.1021/jp9609038
- L. Li, G. Dorfman, A. Melchior, S. Rosenwaks, I. Bar. J. Chem. Phys., 116 (5), 1869 (2002). DOI: 10.1063/1.1427915
- V.M. Apatin, V.O. Kompanets, V.B. Laptev, Yu.A. Matveets, E.A. Ryabov, S.V. Chekalin, V.S. Letokhov. Chem. Phys. Lett., 414 (1-3), 76 (2005). DOI: 10.1016/j.cplett.2005.07.116
- A. Amrein, H.-R. Dubal, M. Quack. Mol. Phys., 56 (3), 727 (1985). DOI:10.1080/00268978500102671
- G. Guelachvili, R.K. Narahari. Handbook of IR standards (Academic Press, Orlando, 1986)
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson et al., Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford CT, 2010). URL: http://www.gaussian.com/
- D. Papouv sek, M.R. Aliev. Molecular Vibrational/Rotational Spectra (Academia, Prague, 1982)
- Yu.S. Makushkin, V.G. Tyuterev. Metody vozmushcheniy i effektivnye gamil'toniany v molekulyarnoy spektroskopii (Nauka, Novosibirsk, 1984) (in Russian)
- M.R. Aliev, J.K.G. Watson. Molecular Spectroscopy: Modern Research, ed. by Rao K.N. (Academic Press, New York, 1985). V. III. Ch. 1. P. 1-67
- S.V. Krasnoshchekov, E.V. Isayeva, N.F. Stepanov. J. Phys. Chem. A., 116 (14), 3691 (2012). DOI: 10.1021/jp211400w
- S.V. Krasnoshchekov, N.F. Stepanov. J. Chem. Phys., 139 (18), 184101 (2013). DOI: 10.1063/1.4829143
- S.V. Krasnoshchekov, E.V. Isayeva, N.F. Stepanov. J. Chem. Phys., 141 (23), 234114 (2014). DOI: 10.1063/1.4903927
- S.V. Krasnoshchekov, N.C. Craig, N.F. Stepanov. J. Phys. Chem. A, 117 (14), 3041 (2013). DOI: 10.1021/jp311398z
- S.V. Krasnoshchekov, N. Vogt, N.F. Stepanov. J. Phys. Chem. A, 119 (25), 6723 (2015). DOI: 10.1021/acs.jpca.5b03241
- S.V. Krasnoshchekov, N.C. Craig, P. Boopalachandran, J. Laane, N.F. Stepanov. J. Phys. Chem. A, 119 (43), 10706 (2015). DOI: 10.1021/acs.jpca.5b07650
- S.V. Krasnoshchekov, R.S. Schutski, N.C. Craig, M. Sibaev, D.L. Crittenden. J. Chem. Phys., 148 (8), 084102 (2018). DOI: 10.1063/1.5020295
- S.V. Krasnoshchekov, V.B. Laptev, I.K. Gainullin. J. Quant. Spectrosc. Radiat. Transfer, 217, 243 (2018). DOI: 10.1016/j.jqsrt.2018.06.004
- S.V. Krasnoshchekov, N.C. Craig, L.A. Koroleva, N.F. Stepanov. Spectrochim. Acta A, 189, 66 (2018). DOI: 10.1016/j.saa.2017.07.062
- C.A. Pietropolli, L. Bizzocchi, B.M. Giuliano, P. Caselli, N.C. Craig, S.V. Krasnoshchekov. JQSRT, 239, 106656 (2019). DOI: 10.1016/j.jqsrt.2019.106656
- S.V. Krasnoshchekov, V.B. Laptev, S.A. Klimin, I.K. Gainullin, A.A. Makarov. Spectrochim. Acta A, 238, 118396 (2020). DOI: 10.1016/j.saa.2020.118396
- O.L. Polyansky, R.I. Ovsyannikov, A.A. Kyuberis, L. Lodi, J. Tennyson, N.F. Zobov. J. Phys. Chem. A, 117 (39), 9633 (2013). DOI: 10.1021/jp312343z
- M.E. Kellman. J. Chem. Phys., 93 (9), 6630 (1990). DOI: 10.1063/1.458930
- M.W. Mackenzie. Spectrochim. Acta A., 40 (3), 279 (1984). DOI: 10.1016/0584-8539(84)80049-5
- S.V. Krasnoshchekov, E.O. Dobrolyubov, M.A. Syzgantseva, R.V. Palvelev. Mol. Phys., 118 (11), e1743887 (2020). DOI: 10.1080/00268976.2020.1743887
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.